Cargando…

Integrative genomic analysis of salivary duct carcinoma

Salivary duct carcinoma (SDC) is one of the most aggressive subtypes of salivary gland cancers. Conventional chemotherapy and/or radiation have shown only limited clinical efficacy in the treatment of recurrent or metastatic SDC. Currently, clinically approved targeted-therapeutics are not generally...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Youngwook, Song, Sanghoon, Lee, Miran, Swatloski, Teresa, Kang, Joon Ho, Ko, Young-Hyeh, Park, Woong-Yang, Jeong, Han-Sin, Park, Keunchil
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7490354/
https://www.ncbi.nlm.nih.gov/pubmed/32929114
http://dx.doi.org/10.1038/s41598-020-72096-2
Descripción
Sumario:Salivary duct carcinoma (SDC) is one of the most aggressive subtypes of salivary gland cancers. Conventional chemotherapy and/or radiation have shown only limited clinical efficacy in the treatment of recurrent or metastatic SDC. Currently, clinically approved targeted-therapeutics are not generally applicable except in very limited cases, and there exists a strong need for the development of treatment against this unique tumor type. To further interrogate genomic features of SDC, we have conducted multi-omic profiling of the SDC to describe the genomic alterations prevalent in this disease. Whole-genome sequencing, whole exome-sequencing and transcriptome sequencing were performed on a discovery cohort of 10 SDC samples. Targeted genomic profiling was performed in additional 32 SDC samples to support the findings obtained from the original discovery cohort. The cancer cohort was characterized by an average mutation burden of 85 somatic exonic mutations per tumor sample. The cohort harbored a mutational signature of BRCA and APOBEC/AID. Several genes, including TP53, RB1, SMAD4, HRAS, APC, PIK3CA and GNAQ were recurrently somatically altered in SDC. A novel fusion gene, generated by genomic rearrangement, MYB-NHSL1, was also noted. Our findings represent a significant layer in the systematic understanding of potentially clinically useful genomic and molecular targets for a subset of recurrent/metastatic SDC.