Cargando…
Norepinephrine depleting toxin DSP-4 and LPS alter gut microbiota and induce neurotoxicity in α-synuclein mutant mice
This study examined the genetic mutation and toxicant exposure in producing gut microbiota alteration and neurotoxicity. Homozygous α-synuclein mutant (SNCA) mice that overexpress human A53T protein and littermate wild-type mice received a single injection of LPS (2 mg/kg) or a selective norepinephr...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7490385/ https://www.ncbi.nlm.nih.gov/pubmed/32929122 http://dx.doi.org/10.1038/s41598-020-72202-4 |
Sumario: | This study examined the genetic mutation and toxicant exposure in producing gut microbiota alteration and neurotoxicity. Homozygous α-synuclein mutant (SNCA) mice that overexpress human A53T protein and littermate wild-type mice received a single injection of LPS (2 mg/kg) or a selective norepinephrine depleting toxin DSP-4 (50 mg/kg), then the motor activity, dopaminergic neuron loss, colon gene expression and gut microbiome were examined 13 months later. LPS and DSP-4 decreased rotarod and wirehang activity, reduced dopaminergic neurons in substantia nigra pars compacta (SNpc), and SNCA mice were more vulnerable. SNCA mice had 1,000-fold higher human SNCA mRNA expression in the gut, and twofold higher gut expression of NADPH oxidase (NOX2) and translocator protein (TSPO). LPS further increased expression of TSPO and IL-6 in SNCA mice. Both LPS and DSP-4 caused microbiome alterations, and SNCA mice were more susceptible. The altered colon microbiome approximated clinical findings in PD patients, characterized by increased abundance of Verrucomicrobiaceae, and decreased abundance of Prevotellaceae, as evidenced by qPCR with 16S rRNA primers. The Firmicutes/Bacteroidetes ratio was increased by LPS in SNCA mice. This study demonstrated a critical role of α-synuclein and toxins interactions in producing gut microbiota disruption, aberrant gut pro-inflammatory gene expression, and dopaminergic neuron loss. |
---|