Cargando…

Flexible ZnO-mAb nanoplatforms for selective peripheral blood mononuclear cell immobilization

Cancer is the second cause of death worldwide. This devastating disease requires specific, fast, and affordable solutions to mitigate and reverse this trend. A step towards cancer-fighting lies in the isolation of natural killer (NK) cells, a set of innate immune cells, that can either be used as bi...

Descripción completa

Detalles Bibliográficos
Autores principales: Babu, K. Sowri, Pinheiro, Pedro F., Marques, Cátia F., Justino, Gonçalo C., Andrade, Suzana M., Alves, Marta M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7490409/
https://www.ncbi.nlm.nih.gov/pubmed/32929172
http://dx.doi.org/10.1038/s41598-020-72133-0
Descripción
Sumario:Cancer is the second cause of death worldwide. This devastating disease requires specific, fast, and affordable solutions to mitigate and reverse this trend. A step towards cancer-fighting lies in the isolation of natural killer (NK) cells, a set of innate immune cells, that can either be used as biomarkers of tumorigenesis or, after autologous transplantation, to fight aggressive metastatic cells. In order to specifically isolate NK cells (which express the surface NKp30 receptor) from peripheral blood mononuclear cells, a ZnO immunoaffinity-based platform was developed by electrodeposition of the metal oxide on a flexible indium tin oxide (ITO)-coated polyethylene terephthalate (PET) substrate. The resulting crystalline and well-aligned ZnO nanorods (NRs) proved their efficiency in immobilizing monoclonal anti-human NKp30 antibodies (mAb), obviating the need for additional procedures for mAb immobilization. The presence of NK cells on the peripheral blood mononuclear cell (PBMCs) fraction was evaluated by the response to their natural ligand (B7-H6) using an acridine orange (AO)-based assay. The successful selection of NK cells from PBMCs by our nanoplatform was assessed by the photoluminescent properties of AO. This easy and straightforward ZnO-mAb nanoplatform paves the way for the design of biosensors for clinic diagnosis, and, due to its inherent biocompatibility, for the initial selection of NK cells for autotransplantation immunotherapies.