Cargando…
Predicting Early Warning Signs of Psychotic Relapse From Passive Sensing Data: An Approach Using Encoder-Decoder Neural Networks
BACKGROUND: Schizophrenia spectrum disorders (SSDs) are chronic conditions, but the severity of symptomatic experiences and functional impairments vacillate over the course of illness. Developing unobtrusive remote monitoring systems to detect early warning signs of impending symptomatic relapses wo...
Autores principales: | Adler, Daniel A, Ben-Zeev, Dror, Tseng, Vincent W-S, Kane, John M, Brian, Rachel, Campbell, Andrew T, Hauser, Marta, Scherer, Emily A, Choudhury, Tanzeem |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7490673/ https://www.ncbi.nlm.nih.gov/pubmed/32865506 http://dx.doi.org/10.2196/19962 |
Ejemplares similares
-
Assessing the relationship between routine and schizophrenia symptoms with passively sensed measures of behavioral stability
por: He-Yueya, Joy, et al.
Publicado: (2020) -
mHealth-Assisted Detection of Precursors to Relapse in Schizophrenia
por: Buck, Benjamin, et al.
Publicado: (2021) -
Predicting Psychotic Relapse in Schizophrenia With Mobile Sensor Data: Routine Cluster Analysis
por: Zhou, Joanne, et al.
Publicado: (2022) -
Using behavioral rhythms and multi-task learning to predict fine-grained symptoms of schizophrenia
por: Tseng, Vincent W.-S., et al.
Publicado: (2020) -
Machine learning for passive mental health symptom prediction: Generalization across different longitudinal mobile sensing studies
por: Adler, Daniel A., et al.
Publicado: (2022)