Cargando…

Using Dual Neural Network Architecture to Detect the Risk of Dementia With Community Health Data: Algorithm Development and Validation Study

BACKGROUND: Recent studies have revealed lifestyle behavioral risk factors that can be modified to reduce the risk of dementia. As modification of lifestyle takes time, early identification of people with high dementia risk is important for timely intervention and support. As cognitive impairment is...

Descripción completa

Detalles Bibliográficos
Autores principales: Shen, Xiao, Wang, Guanjin, Kwan, Rick Yiu-Cho, Choi, Kup-Sze
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7490674/
https://www.ncbi.nlm.nih.gov/pubmed/32865498
http://dx.doi.org/10.2196/19870
_version_ 1783582077202989056
author Shen, Xiao
Wang, Guanjin
Kwan, Rick Yiu-Cho
Choi, Kup-Sze
author_facet Shen, Xiao
Wang, Guanjin
Kwan, Rick Yiu-Cho
Choi, Kup-Sze
author_sort Shen, Xiao
collection PubMed
description BACKGROUND: Recent studies have revealed lifestyle behavioral risk factors that can be modified to reduce the risk of dementia. As modification of lifestyle takes time, early identification of people with high dementia risk is important for timely intervention and support. As cognitive impairment is a diagnostic criterion of dementia, cognitive assessment tools are used in primary care to screen for clinically unevaluated cases. Among them, Mini-Mental State Examination (MMSE) is a very common instrument. However, MMSE is a questionnaire that is administered when symptoms of memory decline have occurred. Early administration at the asymptomatic stage and repeated measurements would lead to a practice effect that degrades the effectiveness of MMSE when it is used at later stages. OBJECTIVE: The aim of this study was to exploit machine learning techniques to assist health care professionals in detecting high-risk individuals by predicting the results of MMSE using elderly health data collected from community-based primary care services. METHODS: A health data set of 2299 samples was adopted in the study. The input data were divided into two groups of different characteristics (ie, client profile data and health assessment data). The predictive output was the result of two-class classification of the normal and high-risk cases that were defined based on MMSE. A dual neural network (DNN) model was proposed to obtain the latent representations of the two groups of input data separately, which were then concatenated for the two-class classification. Mean and k-nearest neighbor were used separately to tackle missing data, whereas a cost-sensitive learning (CSL) algorithm was proposed to deal with class imbalance. The performance of the DNN was evaluated by comparing it with that of conventional machine learning methods. RESULTS: A total of 16 predictive models were built using the elderly health data set. Among them, the proposed DNN with CSL outperformed in the detection of high-risk cases. The area under the receiver operating characteristic curve, average precision, sensitivity, and specificity reached 0.84, 0.88, 0.73, and 0.80, respectively. CONCLUSIONS: The proposed method has the potential to serve as a tool to screen for elderly people with cognitive impairment and predict high-risk cases of dementia at the asymptomatic stage, providing health care professionals with early signals that can prompt suggestions for a follow-up or a detailed diagnosis.
format Online
Article
Text
id pubmed-7490674
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher JMIR Publications
record_format MEDLINE/PubMed
spelling pubmed-74906742020-10-01 Using Dual Neural Network Architecture to Detect the Risk of Dementia With Community Health Data: Algorithm Development and Validation Study Shen, Xiao Wang, Guanjin Kwan, Rick Yiu-Cho Choi, Kup-Sze JMIR Med Inform Original Paper BACKGROUND: Recent studies have revealed lifestyle behavioral risk factors that can be modified to reduce the risk of dementia. As modification of lifestyle takes time, early identification of people with high dementia risk is important for timely intervention and support. As cognitive impairment is a diagnostic criterion of dementia, cognitive assessment tools are used in primary care to screen for clinically unevaluated cases. Among them, Mini-Mental State Examination (MMSE) is a very common instrument. However, MMSE is a questionnaire that is administered when symptoms of memory decline have occurred. Early administration at the asymptomatic stage and repeated measurements would lead to a practice effect that degrades the effectiveness of MMSE when it is used at later stages. OBJECTIVE: The aim of this study was to exploit machine learning techniques to assist health care professionals in detecting high-risk individuals by predicting the results of MMSE using elderly health data collected from community-based primary care services. METHODS: A health data set of 2299 samples was adopted in the study. The input data were divided into two groups of different characteristics (ie, client profile data and health assessment data). The predictive output was the result of two-class classification of the normal and high-risk cases that were defined based on MMSE. A dual neural network (DNN) model was proposed to obtain the latent representations of the two groups of input data separately, which were then concatenated for the two-class classification. Mean and k-nearest neighbor were used separately to tackle missing data, whereas a cost-sensitive learning (CSL) algorithm was proposed to deal with class imbalance. The performance of the DNN was evaluated by comparing it with that of conventional machine learning methods. RESULTS: A total of 16 predictive models were built using the elderly health data set. Among them, the proposed DNN with CSL outperformed in the detection of high-risk cases. The area under the receiver operating characteristic curve, average precision, sensitivity, and specificity reached 0.84, 0.88, 0.73, and 0.80, respectively. CONCLUSIONS: The proposed method has the potential to serve as a tool to screen for elderly people with cognitive impairment and predict high-risk cases of dementia at the asymptomatic stage, providing health care professionals with early signals that can prompt suggestions for a follow-up or a detailed diagnosis. JMIR Publications 2020-08-31 /pmc/articles/PMC7490674/ /pubmed/32865498 http://dx.doi.org/10.2196/19870 Text en ©Xiao Shen, Guanjin Wang, Rick Yiu-Cho Kwan, Kup-Sze Choi. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 31.08.2020. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on http://medinform.jmir.org/, as well as this copyright and license information must be included.
spellingShingle Original Paper
Shen, Xiao
Wang, Guanjin
Kwan, Rick Yiu-Cho
Choi, Kup-Sze
Using Dual Neural Network Architecture to Detect the Risk of Dementia With Community Health Data: Algorithm Development and Validation Study
title Using Dual Neural Network Architecture to Detect the Risk of Dementia With Community Health Data: Algorithm Development and Validation Study
title_full Using Dual Neural Network Architecture to Detect the Risk of Dementia With Community Health Data: Algorithm Development and Validation Study
title_fullStr Using Dual Neural Network Architecture to Detect the Risk of Dementia With Community Health Data: Algorithm Development and Validation Study
title_full_unstemmed Using Dual Neural Network Architecture to Detect the Risk of Dementia With Community Health Data: Algorithm Development and Validation Study
title_short Using Dual Neural Network Architecture to Detect the Risk of Dementia With Community Health Data: Algorithm Development and Validation Study
title_sort using dual neural network architecture to detect the risk of dementia with community health data: algorithm development and validation study
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7490674/
https://www.ncbi.nlm.nih.gov/pubmed/32865498
http://dx.doi.org/10.2196/19870
work_keys_str_mv AT shenxiao usingdualneuralnetworkarchitecturetodetecttheriskofdementiawithcommunityhealthdataalgorithmdevelopmentandvalidationstudy
AT wangguanjin usingdualneuralnetworkarchitecturetodetecttheriskofdementiawithcommunityhealthdataalgorithmdevelopmentandvalidationstudy
AT kwanrickyiucho usingdualneuralnetworkarchitecturetodetecttheriskofdementiawithcommunityhealthdataalgorithmdevelopmentandvalidationstudy
AT choikupsze usingdualneuralnetworkarchitecturetodetecttheriskofdementiawithcommunityhealthdataalgorithmdevelopmentandvalidationstudy