Cargando…
Assessing Public Opinion on CRISPR-Cas9: Combining Crowdsourcing and Deep Learning
BACKGROUND: The discovery of the CRISPR-Cas9–based gene editing method has opened unprecedented new potential for biological and medical engineering, sparking a growing public debate on both the potential and dangers of CRISPR applications. Given the speed of technology development and the almost in...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7490675/ https://www.ncbi.nlm.nih.gov/pubmed/32865499 http://dx.doi.org/10.2196/17830 |
_version_ | 1783582077441015808 |
---|---|
author | Müller, Martin Schneider, Manuel Salathé, Marcel Vayena, Effy |
author_facet | Müller, Martin Schneider, Manuel Salathé, Marcel Vayena, Effy |
author_sort | Müller, Martin |
collection | PubMed |
description | BACKGROUND: The discovery of the CRISPR-Cas9–based gene editing method has opened unprecedented new potential for biological and medical engineering, sparking a growing public debate on both the potential and dangers of CRISPR applications. Given the speed of technology development and the almost instantaneous global spread of news, it is important to follow evolving debates without much delay and in sufficient detail, as certain events may have a major long-term impact on public opinion and later influence policy decisions. OBJECTIVE: Social media networks such as Twitter have shown to be major drivers of news dissemination and public discourse. They provide a vast amount of semistructured data in almost real-time and give direct access to the content of the conversations. We can now mine and analyze such data quickly because of recent developments in machine learning and natural language processing. METHODS: Here, we used Bidirectional Encoder Representations from Transformers (BERT), an attention-based transformer model, in combination with statistical methods to analyze the entirety of all tweets ever published on CRISPR since the publication of the first gene editing application in 2013. RESULTS: We show that the mean sentiment of tweets was initially very positive, but began to decrease over time, and that this decline was driven by rare peaks of strong negative sentiments. Due to the high temporal resolution of the data, we were able to associate these peaks with specific events and to observe how trending topics changed over time. CONCLUSIONS: Overall, this type of analysis can provide valuable and complementary insights into ongoing public debates, extending the traditional empirical bioethics toolset. |
format | Online Article Text |
id | pubmed-7490675 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | JMIR Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-74906752020-10-01 Assessing Public Opinion on CRISPR-Cas9: Combining Crowdsourcing and Deep Learning Müller, Martin Schneider, Manuel Salathé, Marcel Vayena, Effy J Med Internet Res Original Paper BACKGROUND: The discovery of the CRISPR-Cas9–based gene editing method has opened unprecedented new potential for biological and medical engineering, sparking a growing public debate on both the potential and dangers of CRISPR applications. Given the speed of technology development and the almost instantaneous global spread of news, it is important to follow evolving debates without much delay and in sufficient detail, as certain events may have a major long-term impact on public opinion and later influence policy decisions. OBJECTIVE: Social media networks such as Twitter have shown to be major drivers of news dissemination and public discourse. They provide a vast amount of semistructured data in almost real-time and give direct access to the content of the conversations. We can now mine and analyze such data quickly because of recent developments in machine learning and natural language processing. METHODS: Here, we used Bidirectional Encoder Representations from Transformers (BERT), an attention-based transformer model, in combination with statistical methods to analyze the entirety of all tweets ever published on CRISPR since the publication of the first gene editing application in 2013. RESULTS: We show that the mean sentiment of tweets was initially very positive, but began to decrease over time, and that this decline was driven by rare peaks of strong negative sentiments. Due to the high temporal resolution of the data, we were able to associate these peaks with specific events and to observe how trending topics changed over time. CONCLUSIONS: Overall, this type of analysis can provide valuable and complementary insights into ongoing public debates, extending the traditional empirical bioethics toolset. JMIR Publications 2020-08-31 /pmc/articles/PMC7490675/ /pubmed/32865499 http://dx.doi.org/10.2196/17830 Text en ©Martin Müller, Manuel Schneider, Marcel Salathé, Effy Vayena. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 31.08.2020. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be included. |
spellingShingle | Original Paper Müller, Martin Schneider, Manuel Salathé, Marcel Vayena, Effy Assessing Public Opinion on CRISPR-Cas9: Combining Crowdsourcing and Deep Learning |
title | Assessing Public Opinion on CRISPR-Cas9: Combining Crowdsourcing and Deep Learning |
title_full | Assessing Public Opinion on CRISPR-Cas9: Combining Crowdsourcing and Deep Learning |
title_fullStr | Assessing Public Opinion on CRISPR-Cas9: Combining Crowdsourcing and Deep Learning |
title_full_unstemmed | Assessing Public Opinion on CRISPR-Cas9: Combining Crowdsourcing and Deep Learning |
title_short | Assessing Public Opinion on CRISPR-Cas9: Combining Crowdsourcing and Deep Learning |
title_sort | assessing public opinion on crispr-cas9: combining crowdsourcing and deep learning |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7490675/ https://www.ncbi.nlm.nih.gov/pubmed/32865499 http://dx.doi.org/10.2196/17830 |
work_keys_str_mv | AT mullermartin assessingpublicopiniononcrisprcas9combiningcrowdsourcinganddeeplearning AT schneidermanuel assessingpublicopiniononcrisprcas9combiningcrowdsourcinganddeeplearning AT salathemarcel assessingpublicopiniononcrisprcas9combiningcrowdsourcinganddeeplearning AT vayenaeffy assessingpublicopiniononcrisprcas9combiningcrowdsourcinganddeeplearning |