Cargando…
Global chemical modifications comparison of human plasma proteome from two different age groups
In this study, two groups of human plasma proteome at different age groups (old and young) were used to perform a comparison of global chemical modifications, as determined by tandem mass spectrometry (MS/MS) combined with non-limiting modification identification algorithms. The sulfhydryl in the cy...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7490693/ https://www.ncbi.nlm.nih.gov/pubmed/32929118 http://dx.doi.org/10.1038/s41598-020-72196-z |
Sumario: | In this study, two groups of human plasma proteome at different age groups (old and young) were used to perform a comparison of global chemical modifications, as determined by tandem mass spectrometry (MS/MS) combined with non-limiting modification identification algorithms. The sulfhydryl in the cysteine A total of 4 molecular modifications were found to have significant differences passing random grouping tests: the succinylation and phosphorylation modification of cysteine (Cys, C) and the modification of lysine (Lys, K) with threonine (Thr, T) were significantly higher in the old group than in the young group, while the carbamylation of lysine was lower in the young group. We speculate that there is an increase in certain modified proteins in the blood of the old people which, in turn, changes the function of those proteins. This change may be one of the reasons why old people are more likely than young people to be at risk for age-related diseases, such as metabolic diseases, cerebral and cardiovascular diseases, and cancer. |
---|