Cargando…

Glutamatergic modulation of auditory cortex connectivity with attentional brain networks in unpredictable perceptual environment

In a stable environment the brain can minimize processing required for sensory input by forming a predictive model of the surrounding world and suppressing neural response to predicted stimuli. Unpredicted stimuli lead to a prediction error signal propagation through the perceptual network, and resu...

Descripción completa

Detalles Bibliográficos
Autores principales: Kompus, Kristiina, Volehaugen, Vegard, Craven, Alex, Specht, Karsten
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7490710/
https://www.ncbi.nlm.nih.gov/pubmed/32929186
http://dx.doi.org/10.1038/s41598-020-72044-0
Descripción
Sumario:In a stable environment the brain can minimize processing required for sensory input by forming a predictive model of the surrounding world and suppressing neural response to predicted stimuli. Unpredicted stimuli lead to a prediction error signal propagation through the perceptual network, and resulting adjustment to the predictive model. The inter-regional plasticity which enables the model-building and model-adjustment is hypothesized to be mediated via glutamatergic receptors. While pharmacological challenge studies with glutamate receptor ligands have demonstrated impact on prediction-error indices, it is not clear how inter-individual differences in the glutamate system affect the prediction-error processing in non-medicated state. In the present study we examined 20 healthy young subjects with resting-state proton MRS spectroscopy to characterize glutamate + glutamine (rs-Glx) levels in their Heschl’s gyrus (HG), and related this to HG functional connectivity during a roving auditory oddball protocol. No rs-Glx effects were found within the frontotemporal prediction-error network. Larger rs-Glx signal was related to stronger connectivity between HG and bilateral inferior parietal lobule during unpredictable auditory stimulation. We also found effects of rs-Glx on the coherence of default mode network and frontoparietal network during unpredictable auditory stimulation. Our results demonstrate the importance of Glx in modulating long-range connections and wider networks in the brain during perceptual inference.