Cargando…

A Regenerable Hydrogel Electrolyte for Flexible Supercapacitors

Easy regenerability of core components such as electrode and electrolyte is highly required in advanced electrochemical devices. This work reports a reliable, regenerable, and stretchable hydrogel electrolyte based on ionic bonds between polyacrylic acid (PAA) and polyallylamine (PAH). PAA-PAH elect...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Guanbing, Yang, Leyi, Li, Weijun, Chen, Chongyi, Liu, Qiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7490843/
https://www.ncbi.nlm.nih.gov/pubmed/32916631
http://dx.doi.org/10.1016/j.isci.2020.101502
Descripción
Sumario:Easy regenerability of core components such as electrode and electrolyte is highly required in advanced electrochemical devices. This work reports a reliable, regenerable, and stretchable hydrogel electrolyte based on ionic bonds between polyacrylic acid (PAA) and polyallylamine (PAH). PAA-PAH electrolyte (1M LiCl addition) exhibits high ionic conductivity (0.050 S·cm-1) and excellent mechanical property (fracture strain of 1,688%). Notably, the electrolyte can be regenerated to any desired shape under mild conditions and remains 96% and 90% of the initial ionic conductivity after the first and second regeneration, respectively. PAA-PAH/LiCl-based supercapacitor exhibits nearly 100% capacitance retention upon rolling, stretching, and 5,000 charge-discharge cycles, whereas the regenerated device holds 97.6% capacitance of the initial device and 90.9% after 5,000 cycles. This low-cost, high-efficiency, and regenerable hydrogel electrolyte reveals very promising use in solid-state/flexible supercapacitors and possibly becomes a standard commercial hydrogel electrolyte for sustainable electrochemical energy devices.