Cargando…

Impact of different omega-3 fatty acid sources on lipid, hormonal, blood glucose, weight gain and histopathological damages profile in PCOS rat model

BACKGROUND: Omega-3 fatty acids (Ω-3 PUFAs) may help to improve health status in polycystic ovarian syndrome (PCOS) by reducing numerous metabolic disorders (insulin sensitivity, hyperinsulinemia, lipid profile, obesity and inflammation). To evaluate the current objective, 16 weeks (6 weeks of adjus...

Descripción completa

Detalles Bibliográficos
Autores principales: Komal, Fiza, Khan, Muhammad Kamran, Imran, Muhammad, Ahmad, Muhammad Haseeb, Anwar, Haseeb, Ashfaq, Usman Ali, Ahmad, Nazir, Masroor, Amna, Ahmad, Rabia Shabir, Nadeem, Muhammad, Nisa, Mahr Un
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7491187/
https://www.ncbi.nlm.nih.gov/pubmed/32928224
http://dx.doi.org/10.1186/s12967-020-02519-1
Descripción
Sumario:BACKGROUND: Omega-3 fatty acids (Ω-3 PUFAs) may help to improve health status in polycystic ovarian syndrome (PCOS) by reducing numerous metabolic disorders (insulin sensitivity, hyperinsulinemia, lipid profile, obesity and inflammation). To evaluate the current objective, 16 weeks (6 weeks of adjustment period followed by 10 weeks of collection period) research trial was planned to check the impact of different sources of Ω-3 PUFAs (synthetic Ω-3, flaxseed and fish oil) on nutrient digestibility, weight gain, productive (lipid profile, glucose and insulin), reproductive profile (progesterone, follicle stimulating hormone (FSH), estrogen, luteinizing hormone (LH) and prolactin) and histological study of ovarian tissues in Wistar female rats. METHODS: Forty-five rats of 130 ± 10 g weight were divided into 5 groups, each having 9 rats: NC (negative control without PCOS), PC (positive control with PCOS), SO (synthetic omega-3 containing ALA, EPA and DHA), FO (flaxseed oil) and F (fish oil) fed at 300 mg/kg/orally/daily of these sources were added in the basal diets while PC and NC received only the basal diet. Food and water were offered ad libitum. PCOS was induced in the rats fed of PC, SO, FO and F diets group by single intramuscular injection of estradiol-valerate (4 mg/rat/IM). Body weight and blood glucose was recorded weekly. At 16(th) week of trial, blood samples were collected for lipid and hormonal analysis. Ovarian tissues were removed for pathological evaluation. Digestibility was measured by total collection method. RESULTS: Cholesterol, triglycerides and low-density lipoproteins were reduced in SO, FO and F groups when compared with rats of PC group. However, increasing trend of high-density lipoprotein (HDL) was found in same groups. The highest HDL (36.83 ± 0.72 mg/dL) was observed in rats fed F diet. In case of a hormonal profile, testosterone, LH and insulin levels showed a significant reduction after treatments. Blood glucose results showed significantly reducing trend in all the rats fed with Ω-3 PUFAs sources than PC from 5 to 10th week of trial. However, similar trend was noticed in rat’s body weight at the end of 6th week. In ovarian morphology, different stages of follicles were observed in groups fed SO, FO and F diets. Nutrient digestibility in PCOS induced rats was remained non-significant. CONCLUSIONS: The three sources of Ω-3 PUFAs had effective role in improving lipid and hormonal profile, reducing blood glucose, weight gain and histopathological damages in PCOS rats. However, fish oil source might be an innovative approach to cure PCOS via reducing the weight and metabolic anomalies due to EPA and DHA.