Cargando…
A hybrid deep clustering approach for robust cell type profiling using single-cell RNA-seq data
Single-cell RNA sequencing (scRNA-seq) is a recent technology that enables fine-grained discovery of cellular subtypes and specific cell states. Analysis of scRNA-seq data routinely involves machine learning methods, such as feature learning, clustering, and classification, to assist in uncovering n...
Autores principales: | Srinivasan, Suhas, Leshchyk, Anastasia, Johnson, Nathan T., Korkin, Dmitry |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7491323/ https://www.ncbi.nlm.nih.gov/pubmed/32532794 http://dx.doi.org/10.1261/rna.074427.119 |
Ejemplares similares
-
Biological classification with RNA-seq data: Can alternatively spliced transcript expression enhance machine learning classifiers?
por: Johnson, Nathan T., et al.
Publicado: (2018) -
A robust semi-supervised NMF model for single cell RNA-seq data
por: Wu, Peng, et al.
Publicado: (2020) -
SingleCAnalyzer: Interactive Analysis of Single Cell RNA-Seq Data on the Cloud
por: Prieto, Carlos, et al.
Publicado: (2022) -
BingleSeq: a user-friendly R package for bulk and single-cell RNA-Seq data analysis
por: Dimitrov, Daniel, et al.
Publicado: (2020) -
Detecting heterogeneity in single-cell RNA-Seq data by non-negative matrix factorization
por: Zhu, Xun, et al.
Publicado: (2017)