Cargando…
Semiparametric Bayesian inference for the transmission dynamics of COVID-19 with a state-space model
The outbreak of Coronavirus Disease 2019 (COVID-19) is an ongoing pandemic affecting over 200 countries and regions. Inference about the transmission dynamics of COVID-19 can provide important insights into the speed of disease spread and the effects of mitigation policies. We develop a novel Bayesi...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7491370/ https://www.ncbi.nlm.nih.gov/pubmed/32947047 http://dx.doi.org/10.1016/j.cct.2020.106146 |
_version_ | 1783582207135186944 |
---|---|
author | Zhou, Tianjian Ji, Yuan |
author_facet | Zhou, Tianjian Ji, Yuan |
author_sort | Zhou, Tianjian |
collection | PubMed |
description | The outbreak of Coronavirus Disease 2019 (COVID-19) is an ongoing pandemic affecting over 200 countries and regions. Inference about the transmission dynamics of COVID-19 can provide important insights into the speed of disease spread and the effects of mitigation policies. We develop a novel Bayesian approach to such inference based on a probabilistic compartmental model using data of daily confirmed COVID-19 cases. In particular, we consider a probabilistic extension of the classical susceptible-infectious-recovered model, which takes into account undocumented infections and allows the epidemiological parameters to vary over time. We estimate the disease transmission rate via a Gaussian process prior, which captures nonlinear changes over time without the need of specific parametric assumptions. We utilize a parallel-tempering Markov chain Monte Carlo algorithm to efficiently sample from the highly correlated posterior space. Predictions for future observations are done by sampling from their posterior predictive distributions. Performance of the proposed approach is assessed using simulated datasets. Finally, our approach is applied to COVID-19 data from six states of the United States: Washington, New York, California, Florida, Texas, and Illinois. An R package BaySIR is made available at https://github.com/tianjianzhou/BaySIR for the public to conduct independent analysis or reproduce the results in this paper. |
format | Online Article Text |
id | pubmed-7491370 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-74913702020-09-16 Semiparametric Bayesian inference for the transmission dynamics of COVID-19 with a state-space model Zhou, Tianjian Ji, Yuan Contemp Clin Trials Article The outbreak of Coronavirus Disease 2019 (COVID-19) is an ongoing pandemic affecting over 200 countries and regions. Inference about the transmission dynamics of COVID-19 can provide important insights into the speed of disease spread and the effects of mitigation policies. We develop a novel Bayesian approach to such inference based on a probabilistic compartmental model using data of daily confirmed COVID-19 cases. In particular, we consider a probabilistic extension of the classical susceptible-infectious-recovered model, which takes into account undocumented infections and allows the epidemiological parameters to vary over time. We estimate the disease transmission rate via a Gaussian process prior, which captures nonlinear changes over time without the need of specific parametric assumptions. We utilize a parallel-tempering Markov chain Monte Carlo algorithm to efficiently sample from the highly correlated posterior space. Predictions for future observations are done by sampling from their posterior predictive distributions. Performance of the proposed approach is assessed using simulated datasets. Finally, our approach is applied to COVID-19 data from six states of the United States: Washington, New York, California, Florida, Texas, and Illinois. An R package BaySIR is made available at https://github.com/tianjianzhou/BaySIR for the public to conduct independent analysis or reproduce the results in this paper. Elsevier Inc. 2020-10 2020-09-15 /pmc/articles/PMC7491370/ /pubmed/32947047 http://dx.doi.org/10.1016/j.cct.2020.106146 Text en © 2020 Elsevier Inc. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
spellingShingle | Article Zhou, Tianjian Ji, Yuan Semiparametric Bayesian inference for the transmission dynamics of COVID-19 with a state-space model |
title | Semiparametric Bayesian inference for the transmission dynamics of COVID-19 with a state-space model |
title_full | Semiparametric Bayesian inference for the transmission dynamics of COVID-19 with a state-space model |
title_fullStr | Semiparametric Bayesian inference for the transmission dynamics of COVID-19 with a state-space model |
title_full_unstemmed | Semiparametric Bayesian inference for the transmission dynamics of COVID-19 with a state-space model |
title_short | Semiparametric Bayesian inference for the transmission dynamics of COVID-19 with a state-space model |
title_sort | semiparametric bayesian inference for the transmission dynamics of covid-19 with a state-space model |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7491370/ https://www.ncbi.nlm.nih.gov/pubmed/32947047 http://dx.doi.org/10.1016/j.cct.2020.106146 |
work_keys_str_mv | AT zhoutianjian semiparametricbayesianinferenceforthetransmissiondynamicsofcovid19withastatespacemodel AT jiyuan semiparametricbayesianinferenceforthetransmissiondynamicsofcovid19withastatespacemodel |