Cargando…
Semiparametric Bayesian inference for the transmission dynamics of COVID-19 with a state-space model
The outbreak of Coronavirus Disease 2019 (COVID-19) is an ongoing pandemic affecting over 200 countries and regions. Inference about the transmission dynamics of COVID-19 can provide important insights into the speed of disease spread and the effects of mitigation policies. We develop a novel Bayesi...
Autores principales: | Zhou, Tianjian, Ji, Yuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7491370/ https://www.ncbi.nlm.nih.gov/pubmed/32947047 http://dx.doi.org/10.1016/j.cct.2020.106146 |
Ejemplares similares
-
Bayesian inference in the semiparametric log normal frailty model using Gibbs sampling
por: Korsgaard, Inge Riis, et al.
Publicado: (1998) -
Tracking the transmission dynamics of COVID‐19 with a time‐varying coefficient state‐space model
por: Keller, Joshua P., et al.
Publicado: (2022) -
On pseudolikelihood inference for semiparametric models with boundary
problems
por: Chen, Y., et al.
Publicado: (2017) -
Practical nonparametric and semiparametric bayesian statistics
por: Dey, Dipak, et al.
Publicado: (1998) -
Practical nonparametric and semiparametric Bayesian statistics /
Publicado: (1998)