Cargando…

Potential protective roles of phytochemicals on glutamate-induced neurotoxicity: A review

Glutamate, as an essential neurotransmitter, has been thought to have different roles in the central nervous system (CNS), including nerve regeneration, synaptogenesis, and neurogenesis. Excessive glutamate causes an up-regulation of the multiple signaling pathways, including phosphoinositide-3 kina...

Descripción completa

Detalles Bibliográficos
Autores principales: Afshari, Amir R., Fanoudi, Sahar, Rajabian, Arezoo, Sadeghnia, Hamid R., Mollazadeh, Hamid, Hosseini, Azar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Mashhad University of Medical Sciences 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7491505/
https://www.ncbi.nlm.nih.gov/pubmed/32963732
http://dx.doi.org/10.22038/ijbms.2020.43687.10259
Descripción
Sumario:Glutamate, as an essential neurotransmitter, has been thought to have different roles in the central nervous system (CNS), including nerve regeneration, synaptogenesis, and neurogenesis. Excessive glutamate causes an up-regulation of the multiple signaling pathways, including phosphoinositide-3 kinase/protein kinase B (PI3K/Akt), Akt/mammalian target of rapamycin (mTOR) protein, mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK)1/2, and autophagy that are involved in neurodegenerative diseases pathophysiology. There are numerous findings on curcumin, astaxanthin, thymoquinone, and berberine, as natural products, which have outstanding effects in cell signaling far beyond their anti-oxidant activity, considering as a potential therapeutic target for glutamate excitotoxicity. Herein, we address the role of glutamate as a potential target in neurodegenerative diseases and discuss the protective effects of certain phytochemicals on glutamate-induced neurotoxicity.