Cargando…
Initial value estimation of uncertain differential equations and zero-day of COVID-19 spread in China
Assume an uncertain process follows an uncertain differential equation, and some realizations of this process are observed. Parameter estimation for the uncertain differential equation that fits the observed data as much as possible is a core problem in practice. This paper first presents a problem...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7491600/ http://dx.doi.org/10.1007/s10700-020-09337-6 |
Sumario: | Assume an uncertain process follows an uncertain differential equation, and some realizations of this process are observed. Parameter estimation for the uncertain differential equation that fits the observed data as much as possible is a core problem in practice. This paper first presents a problem of initial value estimation for uncertain differential equations and proposes an estimation method. In addition, the method of moments is recast for estimating the time-varying parameters in uncertain differential equations. Using those techniques, a COVID-19 spread model based on uncertain differential equation is derived, and the zero-day of COVID-19 spread in China is inferred. |
---|