Cargando…
Using behavioral rhythms and multi-task learning to predict fine-grained symptoms of schizophrenia
Schizophrenia is a severe and complex psychiatric disorder with heterogeneous and dynamic multi-dimensional symptoms. Behavioral rhythms, such as sleep rhythm, are usually disrupted in people with schizophrenia. As such, behavioral rhythm sensing with smartphones and machine learning can help better...
Autores principales: | Tseng, Vincent W.-S., Sano, Akane, Ben-Zeev, Dror, Brian, Rachel, Campbell, Andrew T., Hauser, Marta, Kane, John M., Scherer, Emily A., Wang, Rui, Wang, Weichen, Wen, Hongyi, Choudhury, Tanzeem |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7492221/ https://www.ncbi.nlm.nih.gov/pubmed/32934246 http://dx.doi.org/10.1038/s41598-020-71689-1 |
Ejemplares similares
-
mHealth-Assisted Detection of Precursors to Relapse in Schizophrenia
por: Buck, Benjamin, et al.
Publicado: (2021) -
Predicting Early Warning Signs of Psychotic Relapse From Passive Sensing Data: An Approach Using Encoder-Decoder Neural Networks
por: Adler, Daniel A, et al.
Publicado: (2020) -
Assessing the relationship between routine and schizophrenia symptoms with passively sensed measures of behavioral stability
por: He-Yueya, Joy, et al.
Publicado: (2020) -
Predicting Psychotic Relapse in Schizophrenia With Mobile Sensor Data: Routine Cluster Analysis
por: Zhou, Joanne, et al.
Publicado: (2022) -
Fine-Grained Face Annotation Using Deep Multi-Task CNN
por: Celona, Luigi, et al.
Publicado: (2018)