Cargando…
Altering the Mechanical Load Environment During Growth Does Not Affect Adult Achilles Tendon Properties in an Avian Bipedal Model
Tendon mechanical properties respond to altered load in adults, but how load history during growth affects adult tendon properties remains unclear. To address this question, we adopted an avian model in which we altered the mechanical load environment across the growth span. Animals were divided at...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7492247/ https://www.ncbi.nlm.nih.gov/pubmed/32984280 http://dx.doi.org/10.3389/fbioe.2020.00994 |
_version_ | 1783582350885519360 |
---|---|
author | Katugam, Kavya Cox, Suzanne M. Salzano, Matthew Q. De Boef, Adam Hast, Michael W. Neuberger, Thomas Ryan, Timothy M. Piazza, Stephen J. Rubenson, Jonas |
author_facet | Katugam, Kavya Cox, Suzanne M. Salzano, Matthew Q. De Boef, Adam Hast, Michael W. Neuberger, Thomas Ryan, Timothy M. Piazza, Stephen J. Rubenson, Jonas |
author_sort | Katugam, Kavya |
collection | PubMed |
description | Tendon mechanical properties respond to altered load in adults, but how load history during growth affects adult tendon properties remains unclear. To address this question, we adopted an avian model in which we altered the mechanical load environment across the growth span. Animals were divided at 2 weeks of age into three groups: (1) an exercise control group given the opportunity to perform high-acceleration movements (EXE, n = 8); (2) a sedentary group restricted from high-intensity exercise (RES, n = 8); and (3) a sedentary group also restricted from high-intensity exercise and in which the gastrocnemius muscles were partially paralyzed using repeated bouts of botulinum toxin-A injections (RES-BTX, n = 8). Video analysis of bird movement confirmed the restrictions eliminated high-intensity exercise and did not alter time spent walking and sitting between groups. At skeletal maturity (33–35 weeks) animals were sacrificed for analysis, consisting of high-field MRI and material load testing, of both the entire free Achilles tendon and the tendon at the bone-tendon junction. Free tendon stiffness, modulus, and hysteresis were unaffected by variation in load environment. Further, the bone-tendon junction cross-sectional area, stress, and strain were also unaffected by variations in load environment. These results suggest that: (a) a baseline level of low-intensity activity (standing and walking) may be sufficient to maintain tendon growth; and (b) if this lower threshold of tendon load is met, non-mechanical mediated tendon growth may override the load-induced mechanotransduction signal attributed to tendon remodeling in adults of the same species. These results are important for understanding of musculoskeletal function and tendon health in growing individuals. |
format | Online Article Text |
id | pubmed-7492247 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-74922472020-09-25 Altering the Mechanical Load Environment During Growth Does Not Affect Adult Achilles Tendon Properties in an Avian Bipedal Model Katugam, Kavya Cox, Suzanne M. Salzano, Matthew Q. De Boef, Adam Hast, Michael W. Neuberger, Thomas Ryan, Timothy M. Piazza, Stephen J. Rubenson, Jonas Front Bioeng Biotechnol Bioengineering and Biotechnology Tendon mechanical properties respond to altered load in adults, but how load history during growth affects adult tendon properties remains unclear. To address this question, we adopted an avian model in which we altered the mechanical load environment across the growth span. Animals were divided at 2 weeks of age into three groups: (1) an exercise control group given the opportunity to perform high-acceleration movements (EXE, n = 8); (2) a sedentary group restricted from high-intensity exercise (RES, n = 8); and (3) a sedentary group also restricted from high-intensity exercise and in which the gastrocnemius muscles were partially paralyzed using repeated bouts of botulinum toxin-A injections (RES-BTX, n = 8). Video analysis of bird movement confirmed the restrictions eliminated high-intensity exercise and did not alter time spent walking and sitting between groups. At skeletal maturity (33–35 weeks) animals were sacrificed for analysis, consisting of high-field MRI and material load testing, of both the entire free Achilles tendon and the tendon at the bone-tendon junction. Free tendon stiffness, modulus, and hysteresis were unaffected by variation in load environment. Further, the bone-tendon junction cross-sectional area, stress, and strain were also unaffected by variations in load environment. These results suggest that: (a) a baseline level of low-intensity activity (standing and walking) may be sufficient to maintain tendon growth; and (b) if this lower threshold of tendon load is met, non-mechanical mediated tendon growth may override the load-induced mechanotransduction signal attributed to tendon remodeling in adults of the same species. These results are important for understanding of musculoskeletal function and tendon health in growing individuals. Frontiers Media S.A. 2020-09-02 /pmc/articles/PMC7492247/ /pubmed/32984280 http://dx.doi.org/10.3389/fbioe.2020.00994 Text en Copyright © 2020 Katugam, Cox, Salzano, De Boef, Hast, Neuberger, Ryan, Piazza and Rubenson. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Bioengineering and Biotechnology Katugam, Kavya Cox, Suzanne M. Salzano, Matthew Q. De Boef, Adam Hast, Michael W. Neuberger, Thomas Ryan, Timothy M. Piazza, Stephen J. Rubenson, Jonas Altering the Mechanical Load Environment During Growth Does Not Affect Adult Achilles Tendon Properties in an Avian Bipedal Model |
title | Altering the Mechanical Load Environment During Growth Does Not Affect Adult Achilles Tendon Properties in an Avian Bipedal Model |
title_full | Altering the Mechanical Load Environment During Growth Does Not Affect Adult Achilles Tendon Properties in an Avian Bipedal Model |
title_fullStr | Altering the Mechanical Load Environment During Growth Does Not Affect Adult Achilles Tendon Properties in an Avian Bipedal Model |
title_full_unstemmed | Altering the Mechanical Load Environment During Growth Does Not Affect Adult Achilles Tendon Properties in an Avian Bipedal Model |
title_short | Altering the Mechanical Load Environment During Growth Does Not Affect Adult Achilles Tendon Properties in an Avian Bipedal Model |
title_sort | altering the mechanical load environment during growth does not affect adult achilles tendon properties in an avian bipedal model |
topic | Bioengineering and Biotechnology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7492247/ https://www.ncbi.nlm.nih.gov/pubmed/32984280 http://dx.doi.org/10.3389/fbioe.2020.00994 |
work_keys_str_mv | AT katugamkavya alteringthemechanicalloadenvironmentduringgrowthdoesnotaffectadultachillestendonpropertiesinanavianbipedalmodel AT coxsuzannem alteringthemechanicalloadenvironmentduringgrowthdoesnotaffectadultachillestendonpropertiesinanavianbipedalmodel AT salzanomatthewq alteringthemechanicalloadenvironmentduringgrowthdoesnotaffectadultachillestendonpropertiesinanavianbipedalmodel AT deboefadam alteringthemechanicalloadenvironmentduringgrowthdoesnotaffectadultachillestendonpropertiesinanavianbipedalmodel AT hastmichaelw alteringthemechanicalloadenvironmentduringgrowthdoesnotaffectadultachillestendonpropertiesinanavianbipedalmodel AT neubergerthomas alteringthemechanicalloadenvironmentduringgrowthdoesnotaffectadultachillestendonpropertiesinanavianbipedalmodel AT ryantimothym alteringthemechanicalloadenvironmentduringgrowthdoesnotaffectadultachillestendonpropertiesinanavianbipedalmodel AT piazzastephenj alteringthemechanicalloadenvironmentduringgrowthdoesnotaffectadultachillestendonpropertiesinanavianbipedalmodel AT rubensonjonas alteringthemechanicalloadenvironmentduringgrowthdoesnotaffectadultachillestendonpropertiesinanavianbipedalmodel |