Cargando…

A predictive index for health status using species-level gut microbiome profiling

Providing insight into one’s health status from a gut microbiome sample is an important clinical goal in current human microbiome research. Herein, we introduce the Gut Microbiome Health Index (GMHI), a biologically-interpretable mathematical formula for predicting the likelihood of disease independ...

Descripción completa

Detalles Bibliográficos
Autores principales: Gupta, Vinod K., Kim, Minsuk, Bakshi, Utpal, Cunningham, Kevin Y., Davis, John M., Lazaridis, Konstantinos N., Nelson, Heidi, Chia, Nicholas, Sung, Jaeyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7492273/
https://www.ncbi.nlm.nih.gov/pubmed/32934239
http://dx.doi.org/10.1038/s41467-020-18476-8
_version_ 1783582356995571712
author Gupta, Vinod K.
Kim, Minsuk
Bakshi, Utpal
Cunningham, Kevin Y.
Davis, John M.
Lazaridis, Konstantinos N.
Nelson, Heidi
Chia, Nicholas
Sung, Jaeyun
author_facet Gupta, Vinod K.
Kim, Minsuk
Bakshi, Utpal
Cunningham, Kevin Y.
Davis, John M.
Lazaridis, Konstantinos N.
Nelson, Heidi
Chia, Nicholas
Sung, Jaeyun
author_sort Gupta, Vinod K.
collection PubMed
description Providing insight into one’s health status from a gut microbiome sample is an important clinical goal in current human microbiome research. Herein, we introduce the Gut Microbiome Health Index (GMHI), a biologically-interpretable mathematical formula for predicting the likelihood of disease independent of the clinical diagnosis. GMHI is formulated upon 50 microbial species associated with healthy gut ecosystems. These species are identified through a multi-study, integrative analysis on 4347 human stool metagenomes from 34 published studies across healthy and 12 different nonhealthy conditions, i.e., disease or abnormal bodyweight. When demonstrated on our population-scale meta-dataset, GMHI is the most robust and consistent predictor of disease presence (or absence) compared to α-diversity indices. Validation on 679 samples from 9 additional studies results in a balanced accuracy of 73.7% in distinguishing healthy from non-healthy groups. Our findings suggest that gut taxonomic signatures can predict health status, and highlight how data sharing efforts can provide broadly applicable discoveries.
format Online
Article
Text
id pubmed-7492273
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-74922732020-10-01 A predictive index for health status using species-level gut microbiome profiling Gupta, Vinod K. Kim, Minsuk Bakshi, Utpal Cunningham, Kevin Y. Davis, John M. Lazaridis, Konstantinos N. Nelson, Heidi Chia, Nicholas Sung, Jaeyun Nat Commun Article Providing insight into one’s health status from a gut microbiome sample is an important clinical goal in current human microbiome research. Herein, we introduce the Gut Microbiome Health Index (GMHI), a biologically-interpretable mathematical formula for predicting the likelihood of disease independent of the clinical diagnosis. GMHI is formulated upon 50 microbial species associated with healthy gut ecosystems. These species are identified through a multi-study, integrative analysis on 4347 human stool metagenomes from 34 published studies across healthy and 12 different nonhealthy conditions, i.e., disease or abnormal bodyweight. When demonstrated on our population-scale meta-dataset, GMHI is the most robust and consistent predictor of disease presence (or absence) compared to α-diversity indices. Validation on 679 samples from 9 additional studies results in a balanced accuracy of 73.7% in distinguishing healthy from non-healthy groups. Our findings suggest that gut taxonomic signatures can predict health status, and highlight how data sharing efforts can provide broadly applicable discoveries. Nature Publishing Group UK 2020-09-15 /pmc/articles/PMC7492273/ /pubmed/32934239 http://dx.doi.org/10.1038/s41467-020-18476-8 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Gupta, Vinod K.
Kim, Minsuk
Bakshi, Utpal
Cunningham, Kevin Y.
Davis, John M.
Lazaridis, Konstantinos N.
Nelson, Heidi
Chia, Nicholas
Sung, Jaeyun
A predictive index for health status using species-level gut microbiome profiling
title A predictive index for health status using species-level gut microbiome profiling
title_full A predictive index for health status using species-level gut microbiome profiling
title_fullStr A predictive index for health status using species-level gut microbiome profiling
title_full_unstemmed A predictive index for health status using species-level gut microbiome profiling
title_short A predictive index for health status using species-level gut microbiome profiling
title_sort predictive index for health status using species-level gut microbiome profiling
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7492273/
https://www.ncbi.nlm.nih.gov/pubmed/32934239
http://dx.doi.org/10.1038/s41467-020-18476-8
work_keys_str_mv AT guptavinodk apredictiveindexforhealthstatususingspecieslevelgutmicrobiomeprofiling
AT kimminsuk apredictiveindexforhealthstatususingspecieslevelgutmicrobiomeprofiling
AT bakshiutpal apredictiveindexforhealthstatususingspecieslevelgutmicrobiomeprofiling
AT cunninghamkeviny apredictiveindexforhealthstatususingspecieslevelgutmicrobiomeprofiling
AT davisjohnm apredictiveindexforhealthstatususingspecieslevelgutmicrobiomeprofiling
AT lazaridiskonstantinosn apredictiveindexforhealthstatususingspecieslevelgutmicrobiomeprofiling
AT nelsonheidi apredictiveindexforhealthstatususingspecieslevelgutmicrobiomeprofiling
AT chianicholas apredictiveindexforhealthstatususingspecieslevelgutmicrobiomeprofiling
AT sungjaeyun apredictiveindexforhealthstatususingspecieslevelgutmicrobiomeprofiling
AT guptavinodk predictiveindexforhealthstatususingspecieslevelgutmicrobiomeprofiling
AT kimminsuk predictiveindexforhealthstatususingspecieslevelgutmicrobiomeprofiling
AT bakshiutpal predictiveindexforhealthstatususingspecieslevelgutmicrobiomeprofiling
AT cunninghamkeviny predictiveindexforhealthstatususingspecieslevelgutmicrobiomeprofiling
AT davisjohnm predictiveindexforhealthstatususingspecieslevelgutmicrobiomeprofiling
AT lazaridiskonstantinosn predictiveindexforhealthstatususingspecieslevelgutmicrobiomeprofiling
AT nelsonheidi predictiveindexforhealthstatususingspecieslevelgutmicrobiomeprofiling
AT chianicholas predictiveindexforhealthstatususingspecieslevelgutmicrobiomeprofiling
AT sungjaeyun predictiveindexforhealthstatususingspecieslevelgutmicrobiomeprofiling