Cargando…
Sorghum Panicle Detection and Counting Using Unmanned Aerial System Images and Deep Learning
Machine learning and computer vision technologies based on high-resolution imagery acquired using unmanned aerial systems (UAS) provide a potential for accurate and efficient high-throughput plant phenotyping. In this study, we developed a sorghum panicle detection and counting pipeline using UAS im...
Autores principales: | Lin, Zhe, Guo, Wenxuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7492560/ https://www.ncbi.nlm.nih.gov/pubmed/32983210 http://dx.doi.org/10.3389/fpls.2020.534853 |
Ejemplares similares
-
Field rice panicle detection and counting based on deep learning
por: Wang, Xinyi, et al.
Publicado: (2022) -
Automated Counting of Rice Panicle by Applying Deep Learning Model to Images from Unmanned Aerial Vehicle Platform
por: Zhou, Chengquan, et al.
Publicado: (2019) -
Detecting Intra-Field Variation in Rice Yield With Unmanned Aerial Vehicle Imagery and Deep Learning
por: Bellis, Emily S., et al.
Publicado: (2022) -
Multi-Spectral Imaging from an Unmanned Aerial Vehicle Enables the Assessment of Seasonal Leaf Area Dynamics of Sorghum Breeding Lines
por: Potgieter, Andries B., et al.
Publicado: (2017) -
High-Throughput Phenotyping of Sorghum Plant Height Using an Unmanned Aerial Vehicle and Its Application to Genomic Prediction Modeling
por: Watanabe, Kakeru, et al.
Publicado: (2017)