Cargando…

Intensity-Modulated Radiation Therapy Optimization for Acceptable and Remaining-One Unacceptable Dose-Volume and Mean-Dose Constraint Planning

We give a novel approach for obtaining an intensity-modulated radiation therapy (IMRT) optimization solution based on the idea of continuous dynamical methods. The proposed method, which is an iterative algorithm derived from the discretization of a continuous-time dynamical system, can handle not o...

Descripción completa

Detalles Bibliográficos
Autores principales: Nakada, Ryosei, Abou Al-Ola, Omar M., Yoshinaga, Tetsuya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7492683/
https://www.ncbi.nlm.nih.gov/pubmed/32963584
http://dx.doi.org/10.1155/2020/3096067
Descripción
Sumario:We give a novel approach for obtaining an intensity-modulated radiation therapy (IMRT) optimization solution based on the idea of continuous dynamical methods. The proposed method, which is an iterative algorithm derived from the discretization of a continuous-time dynamical system, can handle not only dose-volume but also mean-dose constraints directly in IMRT treatment planning. A theoretical proof for the convergence to an equilibrium corresponding to the desired IMRT planning is given by using the Lyapunov stability theorem. By introducing the concept of “acceptable,” which means the existence of a nonempty set of beam weights satisfying the given dose-volume and mean-dose constraints, and by using the proposed method for an acceptable IMRT planning, one can resolve the issue that the objective and evaluation are different in the conventional planning process. Moreover, in the case where the target planning is totally unacceptable and partly acceptable except for one group of dose constraints, we give a procedure that enables us to obtain a nearly optimal solution close to the desired solution for unacceptable planning. The performance of the proposed approach for an acceptable or unacceptable planning is confirmed through numerical experiments simulating a clinical setup.