Cargando…
EEG-Based Emotion Classification Using a Deep Neural Network and Sparse Autoencoder
Emotion classification based on brain–computer interface (BCI) systems is an appealing research topic. Recently, deep learning has been employed for the emotion classifications of BCI systems and compared to traditional classification methods improved results have been obtained. In this paper, a nov...
Autores principales: | Liu, Junxiu, Wu, Guopei, Luo, Yuling, Qiu, Senhui, Yang, Su, Li, Wei, Bi, Yifei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7492909/ https://www.ncbi.nlm.nih.gov/pubmed/32982703 http://dx.doi.org/10.3389/fnsys.2020.00043 |
Ejemplares similares
-
Deep Sparse Autoencoder and Recursive Neural Network for EEG Emotion Recognition
por: Li, Qi, et al.
Publicado: (2022) -
Latent Factor Decoding of Multi-Channel EEG for Emotion Recognition Through Autoencoder-Like Neural Networks
por: Li, Xiang, et al.
Publicado: (2020) -
Improving EEG-Based Driver Fatigue Classification Using Sparse-Deep Belief Networks
por: Chai, Rifai, et al.
Publicado: (2017) -
An Intelligent EEG Classification Methodology Based on Sparse Representation Enhanced Deep Learning Networks
por: Huang, Jing-Shan, et al.
Publicado: (2020) -
SASDL and RBATQ: Sparse Autoencoder With Swarm Based Deep Learning and Reinforcement Based Q-Learning for EEG Classification
Publicado: (2022)