Cargando…
Detecting possibly frequent change-points: Wild Binary Segmentation 2 and steepest-drop model selection—rejoinder
Many existing procedures for detecting multiple change-points in data sequences fail in frequent-change-point scenarios. This article proposes a new change-point detection methodology designed to work well in both infrequent and frequent change-point settings. It is made up of two ingredients: one i...
Autor principal: | Fryzlewicz, Piotr |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7493064/ https://www.ncbi.nlm.nih.gov/pubmed/32952406 http://dx.doi.org/10.1007/s42952-020-00085-2 |
Ejemplares similares
-
Sometimes More is Too Much: A Rejoinder to the Commentaries on Greiff et al. (2015)
por: Greiff, Samuel, et al.
Publicado: (2017) -
A link between the steepest descent method and fixed-point iterations
por: Heid, Pascal
Publicado: (2022) -
Reply to Çiftci, S.; Aydin, B.K. Comment on “Lee et al. Accuracy of New Deep Learning Model-Based Segmentation and Key-Point Multi-Detection Method for Ultrasonographic Developmental Dysplasia of the Hip (DDH) Screening. Diagnostics 2021, 11, 1174”
por: Lee, Si-Wook, et al.
Publicado: (2022) -
Rejoinder
por: Bartrip, Peter
Publicado: (1999) -
RASNIK Image Processing with a Steepest Ascent
por: Hashemi, K S, et al.
Publicado: (1995)