Cargando…
Deep learning based feature-level integration of multi-omics data for breast cancer patients survival analysis
BACKGROUND: Breast cancer is the most prevalent and among the most deadly cancers in females. Patients with breast cancer have highly variable survival lengths, indicating a need to identify prognostic biomarkers for personalized diagnosis and treatment. With the development of new technologies such...
Autores principales: | Tong, Li, Mitchel, Jonathan, Chatlin, Kevin, Wang, May D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7493161/ https://www.ncbi.nlm.nih.gov/pubmed/32933515 http://dx.doi.org/10.1186/s12911-020-01225-8 |
Ejemplares similares
-
Deep learning assisted multi-omics integration for survival and drug-response prediction in breast cancer
por: Malik, Vidhi, et al.
Publicado: (2021) -
An Integrated Deep Network for Cancer Survival Prediction Using Omics Data
por: Hassanzadeh, Hamid Reza, et al.
Publicado: (2021) -
Deep Learning for Integrated Analysis of Insulin Resistance with Multi-Omics Data
por: Huang, Eunchong, et al.
Publicado: (2021) -
CustOmics: A versatile deep-learning based strategy for multi-omics integration
por: Benkirane, Hakim, et al.
Publicado: (2023) -
Multimodal deep learning approaches for single-cell multi-omics data integration
por: Athaya, Tasbiraha, et al.
Publicado: (2023)