Cargando…

Food and Market Waste–A Pathway to Sustainable Fuels and Waste Valorization

[Image: see text] Food and market waste (FMW) is one of the most abundant unrecycled products which poses waste management issues and negative environmental impacts. Thermo-catalytic reforming (TCR) is a pyrolysis based technology which can convert a wide range of biomass wastes into energy vectors...

Descripción completa

Detalles Bibliográficos
Autores principales: Ouadi, Miloud, Bashir, Muhammad Asif, Speranza, Lais Galileu, Jahangiri, Hessam, Hornung, Andreas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7493287/
https://www.ncbi.nlm.nih.gov/pubmed/32952287
http://dx.doi.org/10.1021/acs.energyfuels.9b01650
Descripción
Sumario:[Image: see text] Food and market waste (FMW) is one of the most abundant unrecycled products which poses waste management issues and negative environmental impacts. Thermo-catalytic reforming (TCR) is a pyrolysis based technology which can convert a wide range of biomass wastes into energy vectors bio-oil, syngas, and char. This paper investigates the conversion potential of FMW into sustainable biofuels. The FMW was processed using a laboratory scale 2 kg/h TCR reactor. The process produced 7 wt % organic bio-oil, 53 wt % permanent gas, and 22 wt % char. The bio-oil higher heating value (HHV) was found to be 36.72 MJ/kg, comparable to biodiesel, and contained a low oxygen content (<5%) due to cracking of higher molecular weight organics. Naphthalene was detected to be the most abundant aromatic compound within the oil, with relative abundance of 12.95% measured by GC-MS. The total acid number of the oil (TAN) and viscosity were 11.7 mg KOH/g and 6.3 cSt, respectively. The gross calorific value of the produced biochar was 23.64 MJ/kg, while the permanent gas showed a higher heating value of approximately 17 MJ/Nm(3). Methane (CH(4)) was found to be the largest fraction in the permanent gases reaching over 23%. This resulted either due to the partial methanation of biosyngas over the catalytically active FMW biochar or the hydrogenation of coke deposited on the biochar in the post reforming stage.