Cargando…

Tamoxifen-inducible cardiac-specific Cre transgenic mouse using VIPR2 intron

Genetically engineered mouse models through gene deletion are useful tools for analyzing gene function. To delete a gene in a certain tissue temporally, tissue-specific and tamoxifen-inducible Cre transgenic mice are generally used. Here, we generated transgenic mouse with cardiac-specific expressio...

Descripción completa

Detalles Bibliográficos
Autores principales: Chin, Hyun Jung, Lee, So-young, Lee, Daekee
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7493340/
https://www.ncbi.nlm.nih.gov/pubmed/32983955
http://dx.doi.org/10.1186/s42826-020-00065-x
Descripción
Sumario:Genetically engineered mouse models through gene deletion are useful tools for analyzing gene function. To delete a gene in a certain tissue temporally, tissue-specific and tamoxifen-inducible Cre transgenic mice are generally used. Here, we generated transgenic mouse with cardiac-specific expression of Cre recombinase fused to a mutant estrogen ligand-binding domain (ERT2) on both N-terminal and C-terminal under the regulatory region of human vasoactive intestinal peptide receptor 2 (VIPR2) intron and Hsp68 promoter (VIPR2-ERT2CreERT2). In VIPR2-ERT2CreERT2 transgenic mice, mRNA for Cre gene was highly expressed in the heart. To further reveal heart-specific Cre expression, VIPR2-ERT2CreERT2 mice mated with ROSA26-lacZ reporter mice were examined by X-gal staining. Results of X-gal staining revealed that Cre-dependent recombination occurred only in the heart after treatment with tamoxifen. Taken together, these results demonstrate that VIPR2-ERT2CreERT2 transgenic mouse is a useful model to unveil a specific gene function in the heart.