Cargando…
Seagull: lasso, group lasso and sparse-group lasso regularization for linear regression models via proximal gradient descent
BACKGROUND: Statistical analyses of biological problems in life sciences often lead to high-dimensional linear models. To solve the corresponding system of equations, penalization approaches are often the methods of choice. They are especially useful in case of multicollinearity, which appears if th...
Autores principales: | Klosa, Jan, Simon, Noah, Westermark, Pål Olof, Liebscher, Volkmar, Wittenburg, Dörte |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7493359/ https://www.ncbi.nlm.nih.gov/pubmed/32933477 http://dx.doi.org/10.1186/s12859-020-03725-w |
Ejemplares similares
-
Groupyr: Sparse Group Lasso in Python
por: Richie-Halford, Adam, et al.
Publicado: (2021) -
Sparse Damage Detection with Complex Group Lasso and Adaptive Complex Group Lasso
por: Dimopoulos, Vasileios, et al.
Publicado: (2022) -
Regularized group regression methods for genomic prediction: Bridge, MCP, SCAD, group bridge, group lasso, sparse group lasso, group MCP and group SCAD
por: Ogutu, Joseph O, et al.
Publicado: (2014) -
Identification of hospital cost drivers using sparse group lasso
por: Swierkowski, Piotr, et al.
Publicado: (2018) -
Genetic Variants Detection Based on Weighted Sparse Group Lasso
por: Che, Kai, et al.
Publicado: (2020)