Cargando…
DIY AI, deep learning network development for automated image classification in a point‐of‐care ultrasound quality assurance program
BACKGROUND: Artificial intelligence (AI) is increasingly a part of daily life and offers great possibilities to enrich health care. Imaging applications of AI have been mostly developed by large, well‐funded companies and currently are inaccessible to the comparatively small market of point‐of‐care...
Autores principales: | Blaivas, Michael, Arntfield, Robert, White, Matthew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7493582/ https://www.ncbi.nlm.nih.gov/pubmed/33000024 http://dx.doi.org/10.1002/emp2.12018 |
Ejemplares similares
-
Point‐of‐care ultrasound stewardship
por: Shokoohi, Hamid, et al.
Publicado: (2020) -
Artificial intelligence versus expert: a comparison of rapid visual inferior vena cava collapsibility assessment between POCUS experts and a deep learning algorithm
por: Blaivas, Michael, et al.
Publicado: (2020) -
Daily quality assurance phantom for ultrasound image guided radiation therapy
por: Drever, Laura, et al.
Publicado: (2007) -
An automated DIY framework for experimental evolution of Pseudomonas putida
por: Espeso, David R., et al.
Publicado: (2020) -
Comparison of ultrasound quality assurance phantom measurements from matched and mixed scanner‐transducer combinations
por: Tradup, D. J., et al.
Publicado: (2003)