Cargando…
COVID-CAPS: A capsule network-based framework for identification of COVID-19 cases from X-ray images
Novel Coronavirus disease (COVID-19) has abruptly and undoubtedly changed the world as we know it at the end of the 2nd decade of the 21st century. COVID-19 is extremely contagious and quickly spreading globally making its early diagnosis of paramount importance. Early diagnosis of COVID-19 enables...
Autores principales: | Afshar, Parnian, Heidarian, Shahin, Naderkhani, Farnoosh, Oikonomou, Anastasia, Plataniotis, Konstantinos N., Mohammadi, Arash |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7493761/ https://www.ncbi.nlm.nih.gov/pubmed/32958971 http://dx.doi.org/10.1016/j.patrec.2020.09.010 |
Ejemplares similares
-
COVID-rate: an automated framework for segmentation of COVID-19 lesions from chest CT images
por: Enshaei, Nastaran, et al.
Publicado: (2022) -
COVID-FACT: A Fully-Automated Capsule Network-Based Framework for Identification of COVID-19 Cases from Chest CT Scans
por: Heidarian, Shahin, et al.
Publicado: (2021) -
Human-level COVID-19 diagnosis from low-dose CT scans using a two-stage time-distributed capsule network
por: Afshar, Parnian, et al.
Publicado: (2022) -
Robust framework for COVID-19 identication from a multicenter dataset of chest CT scans
por: Khademi, Sadaf, et al.
Publicado: (2023) -
3D-MCN: A 3D Multi-scale Capsule Network for Lung Nodule Malignancy Prediction
por: Afshar, Parnian, et al.
Publicado: (2020)