Cargando…

Replicable simulation of distal hot water premise plumbing using convectively-mixed pipe reactors

A lack of replicable test systems that realistically simulate hot water premise plumbing conditions at the laboratory-scale is an obstacle to identifying key factors that support growth of opportunistic pathogens (OPs) and opportunities to stem disease transmission. Here we developed the convectivel...

Descripción completa

Detalles Bibliográficos
Autores principales: Spencer, M. Storme, Cullom, Abraham C., Rhoads, William J., Pruden, Amy, Edwards, Marc A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7494094/
https://www.ncbi.nlm.nih.gov/pubmed/32936810
http://dx.doi.org/10.1371/journal.pone.0238385
Descripción
Sumario:A lack of replicable test systems that realistically simulate hot water premise plumbing conditions at the laboratory-scale is an obstacle to identifying key factors that support growth of opportunistic pathogens (OPs) and opportunities to stem disease transmission. Here we developed the convectively-mixed pipe reactor (CMPR) as a simple reproducible system, consisting of off-the-shelf plumbing materials, that self-mixes through natural convective currents and enables testing of multiple, replicated, and realistic premise plumbing conditions in parallel. A 10-week validation study was conducted, comparing three pipe materials (PVC, PVC-copper, and PVC-iron; n = 18 each) to stagnant control pipes without convective mixing (n = 3 each). Replicate CMPRs were found to yield consistent water chemistry as a function of pipe material, with differences becoming less discernable by week 9. Temperature, an overarching factor known to control OP growth, was consistently maintained across all 54 CMPRs, with a coefficient of variation <2%. Dissolved oxygen (DO) remained lower in PVC-iron (1.96 ± 0.29 mg/L) than in PVC (5.71 ± 0.22 mg/L) or PVC-copper (5.90 ± 0.38 mg/L) CMPRs as expected due to corrosion. Further, DO in PVC-iron CMPRs was 33% of that observed in corresponding stagnant pipes (6.03 ± 0.33 mg/L), demonstrating the important role of internal convective mixing in stimulating corrosion and microbiological respiration. 16S rRNA gene amplicon sequencing indicated that both bulk water (P(adonis) = 0.001, R(2) = 0.222, P(betadis) = 0.785) and biofilm (P(adonis) = 0.001, R(2) = 0.119, P(betadis) = 0.827) microbial communities differed between CMPR versus stagnant pipes, consistent with creation of a distinct ecological niche. Overall, CMPRs can provide a more realistic simulation of certain aspects of premise plumbing than reactors commonly applied in prior research, at a fraction of the cost, space, and water demand of large pilot-scale rigs.