Cargando…

Post-exposure prophylaxis (PEP) efficacy of rifampin, rifapentine, moxifloxacin, minocycline, and clarithromycin in a susceptible-subclinical model of leprosy

BACKGROUND: Subclinical infection with Mycobacterium leprae is one potential source of leprosy transmission, and post-exposure prophylaxis (PEP) regimens have been proposed to control this source. Because PEP trials require considerable investment, we applied a sensitive variation of the kinetic mou...

Descripción completa

Detalles Bibliográficos
Autores principales: Lenz, Shannon M., Collins, Jaymes H., Ray, Nashone A., Hagge, Deanna A., Lahiri, Ramanuj, Adams, Linda B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7494095/
https://www.ncbi.nlm.nih.gov/pubmed/32936818
http://dx.doi.org/10.1371/journal.pntd.0008583
Descripción
Sumario:BACKGROUND: Subclinical infection with Mycobacterium leprae is one potential source of leprosy transmission, and post-exposure prophylaxis (PEP) regimens have been proposed to control this source. Because PEP trials require considerable investment, we applied a sensitive variation of the kinetic mouse footpad (MFP) screening assay to aid in the choice of drugs and regimens for clinical trials. METHODOLOGY/PRINCIPAL FINDINGS: Athymic nude mice were inoculated in the footpad (FP) with 6 x 10(3) viable M. leprae and treated by gastric gavage with a single dose of Rifampin (SDR), Rifampin + Ofloxacin + Minocycline (SD-ROM), or Rifapentine + Minocycline + Moxifloxacin (SD-PMM) or with the proposed PEP++ regimen of three once-monthly doses of Rifampin + Moxifloxacin (RM), Rifampin + Clarithromycin (RC), Rifapentine + Moxifloxacin (PM), or Rifapentine + Clarithromycin (PC). At various times post-treatment, DNA was purified from the FP, and M. leprae were enumerated by RLEP quantitative PCR. A regression analysis was calculated to determine the expected RLEP value if 99.9% of the bacilli were killed after the administration of each regimen. SDR and SD-ROM induced little growth delay in this highly susceptible murine model of subclinical infection. In contrast, SD-PMM delayed measurable M. leprae growth above the inoculum by 8 months. The four multi-dose regimens delayed bacterial growth for >9months post-treatment cessation. CONCLUSIONS/SIGNIFICANCE: The delay in discernable M. leprae growth post-treatment was an excellent indicator of drug efficacy for both early (3–4 months) and late (8–9 months) drug efficacy. Our data indicates that multi-dose PEP may be required to control infection in highly susceptible individuals with subclinical leprosy to prevent disease and decrease transmission.