Cargando…

Inferring transmission heterogeneity using virus genealogies: Estimation and targeted prevention

Spread of HIV typically involves uneven transmission patterns where some individuals spread to a large number of individuals while others to only a few or none. Such transmission heterogeneity can impact how fast and how much an epidemic spreads. Further, more efficient interventions may be achieved...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yunjun, Leitner, Thomas, Albert, Jan, Britton, Tom
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7494101/
https://www.ncbi.nlm.nih.gov/pubmed/32881984
http://dx.doi.org/10.1371/journal.pcbi.1008122
Descripción
Sumario:Spread of HIV typically involves uneven transmission patterns where some individuals spread to a large number of individuals while others to only a few or none. Such transmission heterogeneity can impact how fast and how much an epidemic spreads. Further, more efficient interventions may be achieved by taking such transmission heterogeneity into account. To address these issues, we developed two phylogenetic methods based on virus sequence data: 1) to generally detect if significant transmission heterogeneity is present, and 2) to pinpoint where in a phylogeny high-level spread is occurring. We derive inference procedures to estimate model parameters, including the amount of transmission heterogeneity, in a sampled epidemic. We show that it is possible to detect transmission heterogeneity under a wide range of simulated situations, including incomplete sampling, varying levels of heterogeneity, and including within-host genetic diversity. When evaluating real HIV-1 data from different epidemic scenarios, we found a lower level of transmission heterogeneity in slowly spreading situations and a higher level of heterogeneity in data that included a rapid outbreak, while R(0) and Sackin’s index (overall tree shape statistic) were similar in the two scenarios, suggesting that our new method is able to detect transmission heterogeneity in real data. We then show by simulations that targeted prevention, where we pinpoint high-level spread using a coalescence measurement, is efficient when sequence data are collected in an ongoing surveillance system. Such phylogeny-guided prevention is efficient under both single-step contact tracing as well as iterative contact tracing as compared to random intervention.