Cargando…
Clusters of polymorphic transmembrane genes control resistance to schistosomes in snail vectors
Schistosomiasis is a debilitating parasitic disease infecting hundreds of millions of people. Schistosomes use aquatic snails as intermediate hosts. A promising avenue for disease control involves leveraging innate host mechanisms to reduce snail vectorial capacity. In a genome-wide association stud...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7494358/ https://www.ncbi.nlm.nih.gov/pubmed/32845238 http://dx.doi.org/10.7554/eLife.59395 |
_version_ | 1783582733953400832 |
---|---|
author | Tennessen, Jacob A Bollmann, Stephanie R Peremyslova, Ekaterina Kronmiller, Brent A Sergi, Clint Hamali, Bulut Blouin, Michael Scott |
author_facet | Tennessen, Jacob A Bollmann, Stephanie R Peremyslova, Ekaterina Kronmiller, Brent A Sergi, Clint Hamali, Bulut Blouin, Michael Scott |
author_sort | Tennessen, Jacob A |
collection | PubMed |
description | Schistosomiasis is a debilitating parasitic disease infecting hundreds of millions of people. Schistosomes use aquatic snails as intermediate hosts. A promising avenue for disease control involves leveraging innate host mechanisms to reduce snail vectorial capacity. In a genome-wide association study of Biomphalaria glabrata snails, we identify genomic region PTC2 which exhibits the largest known correlation with susceptibility to parasite infection (>15 fold effect). Using new genome assemblies with substantially higher contiguity than the Biomphalaria reference genome, we show that PTC2 haplotypes are exceptionally divergent in structure and sequence. This variation includes multi-kilobase indels containing entire genes, and orthologs for which most amino acid residues are polymorphic. RNA-Seq annotation reveals that most of these genes encode single-pass transmembrane proteins, as seen in another resistance region in the same species. Such groups of hyperdiverse snail proteins may mediate host-parasite interaction at the cell surface, offering promising targets for blocking the transmission of schistosomiasis. |
format | Online Article Text |
id | pubmed-7494358 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-74943582020-09-21 Clusters of polymorphic transmembrane genes control resistance to schistosomes in snail vectors Tennessen, Jacob A Bollmann, Stephanie R Peremyslova, Ekaterina Kronmiller, Brent A Sergi, Clint Hamali, Bulut Blouin, Michael Scott eLife Epidemiology and Global Health Schistosomiasis is a debilitating parasitic disease infecting hundreds of millions of people. Schistosomes use aquatic snails as intermediate hosts. A promising avenue for disease control involves leveraging innate host mechanisms to reduce snail vectorial capacity. In a genome-wide association study of Biomphalaria glabrata snails, we identify genomic region PTC2 which exhibits the largest known correlation with susceptibility to parasite infection (>15 fold effect). Using new genome assemblies with substantially higher contiguity than the Biomphalaria reference genome, we show that PTC2 haplotypes are exceptionally divergent in structure and sequence. This variation includes multi-kilobase indels containing entire genes, and orthologs for which most amino acid residues are polymorphic. RNA-Seq annotation reveals that most of these genes encode single-pass transmembrane proteins, as seen in another resistance region in the same species. Such groups of hyperdiverse snail proteins may mediate host-parasite interaction at the cell surface, offering promising targets for blocking the transmission of schistosomiasis. eLife Sciences Publications, Ltd 2020-08-26 /pmc/articles/PMC7494358/ /pubmed/32845238 http://dx.doi.org/10.7554/eLife.59395 Text en © 2020, Tennessen et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Epidemiology and Global Health Tennessen, Jacob A Bollmann, Stephanie R Peremyslova, Ekaterina Kronmiller, Brent A Sergi, Clint Hamali, Bulut Blouin, Michael Scott Clusters of polymorphic transmembrane genes control resistance to schistosomes in snail vectors |
title | Clusters of polymorphic transmembrane genes control resistance to schistosomes in snail vectors |
title_full | Clusters of polymorphic transmembrane genes control resistance to schistosomes in snail vectors |
title_fullStr | Clusters of polymorphic transmembrane genes control resistance to schistosomes in snail vectors |
title_full_unstemmed | Clusters of polymorphic transmembrane genes control resistance to schistosomes in snail vectors |
title_short | Clusters of polymorphic transmembrane genes control resistance to schistosomes in snail vectors |
title_sort | clusters of polymorphic transmembrane genes control resistance to schistosomes in snail vectors |
topic | Epidemiology and Global Health |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7494358/ https://www.ncbi.nlm.nih.gov/pubmed/32845238 http://dx.doi.org/10.7554/eLife.59395 |
work_keys_str_mv | AT tennessenjacoba clustersofpolymorphictransmembranegenescontrolresistancetoschistosomesinsnailvectors AT bollmannstephanier clustersofpolymorphictransmembranegenescontrolresistancetoschistosomesinsnailvectors AT peremyslovaekaterina clustersofpolymorphictransmembranegenescontrolresistancetoschistosomesinsnailvectors AT kronmillerbrenta clustersofpolymorphictransmembranegenescontrolresistancetoschistosomesinsnailvectors AT sergiclint clustersofpolymorphictransmembranegenescontrolresistancetoschistosomesinsnailvectors AT hamalibulut clustersofpolymorphictransmembranegenescontrolresistancetoschistosomesinsnailvectors AT blouinmichaelscott clustersofpolymorphictransmembranegenescontrolresistancetoschistosomesinsnailvectors |