Cargando…
Targeted Treatment of Colon Cancer with Aptamer-Guided Albumin Nanoparticles Loaded with Docetaxel
PURPOSE: Chemotherapy of colon cancer needs improvement to mitigate the severe adverse effects (AEs) associated with the cytotoxic drugs. The aim of this study is to develop a novel targeted drug delivery system (TDDS) with practical application potential for colon cancer treatment. METHODS: The TDD...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7494387/ https://www.ncbi.nlm.nih.gov/pubmed/32982230 http://dx.doi.org/10.2147/IJN.S267177 |
Sumario: | PURPOSE: Chemotherapy of colon cancer needs improvement to mitigate the severe adverse effects (AEs) associated with the cytotoxic drugs. The aim of this study is to develop a novel targeted drug delivery system (TDDS) with practical application potential for colon cancer treatment. METHODS: The TDDS was built by loading docetaxel (DTX) in albumin nanoparticles (NPs) that were functionalized with nucleolin-targeted aptamers (AS1411). RESULTS: The TDDS (Apt-NPs-DTX) had an average size of 62 nm and was negatively charged with a zeta potential of −31.2 mV. DTX was released from the albumin NP with a typical sustained release profile. Aptamer-guided NPs were preferentially ingested by nucleolin-expressing CT26 colon cancer cells vs the control cells. In vitro cytotoxicity study showed that Apt-NPs-DTX significantly enhanced the killing of CT26 colon cancer cells. Importantly, compared with non-targeted drug delivery, Apt-NPs-DTX treatment significantly improved antitumor efficacy and prolonged the survival of CT26-bearing mice, without raising systemic toxicity. CONCLUSION: The results suggest that Apt-NPs-DTX has potential in the targeted treatment of colon cancer. |
---|