Cargando…
Supporting data for impact of filler composition on mechanical and dynamic response of 3-D printed silicone-based nanocomposite elastomers
This research reports on the physical and mechanical effects of various filler materials used in direct ink write (DIW) 3-D printing resins. The data reported herein supports interpretation and discussion provided in the research article “Impact of Filler Composition on Mechanical and Dynamic Respon...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7494485/ https://www.ncbi.nlm.nih.gov/pubmed/32984456 http://dx.doi.org/10.1016/j.dib.2020.106240 |
Sumario: | This research reports on the physical and mechanical effects of various filler materials used in direct ink write (DIW) 3-D printing resins. The data reported herein supports interpretation and discussion provided in the research article “Impact of Filler Composition on Mechanical and Dynamic Response of 3-D Printed Silicone-based Nanocomposite Elastomers” [1]. The datasheet describes the model structures and the interaction energies between the fillers and the other components by using Molecular Dynamics (MD) simulations. This report includes mechanical responses of single-cubic (SC) and face-centered tetragonal (FCT) structures printed using new DIW resin formulations (polydimethylsiloxane-based silicones filled with aluminum oxide, graphite, or titanium dioxide). Using MD simulations and mechanical data, the overall flexibility and interactions between resin components are fully characterized. |
---|