Cargando…

Wide range zero-thermal-quenching ultralong phosphorescence from zero-dimensional metal halide hybrids

Materials with ultralong phosphorescence have wide-ranging application prospects in biological imaging, light-emitting devices, and anti-counterfeiting. Usually, molecular phosphorescence is significantly quenched with increasing temperature, rendering it difficult to achieve high-efficiency and ult...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Shuya, Fang, Xiaoyu, Lu, Bo, Yan, Dongpeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7494901/
https://www.ncbi.nlm.nih.gov/pubmed/32938942
http://dx.doi.org/10.1038/s41467-020-18482-w
Descripción
Sumario:Materials with ultralong phosphorescence have wide-ranging application prospects in biological imaging, light-emitting devices, and anti-counterfeiting. Usually, molecular phosphorescence is significantly quenched with increasing temperature, rendering it difficult to achieve high-efficiency and ultralong room temperature phosphorescence. Herein, we spearhead this challenging effort to design thermal-quenching resistant phosphorescent materials based on an effective intermediate energy buffer and energy transfer route. Co-crystallized assembly of zero-dimensional metal halide organic-inorganic hybrids enables ultralong room temperature phosphorescence of (Ph(4)P)(2)Cd(2)Br(6) that maintains luminescent stability across a wide temperature range from 100 to 320 K (ΔT = 220 °C) with the room temperature phosphorescence quantum yield of 62.79% and lifetime of 37.85 ms, which exceeds those of other state-of-the-art systems. Therefore, this work not only describes a design for thermal-quenching-resistant luminescent materials with high efficiency, but also demonstrates an effective way to obtain intelligent systems with long-lasting room temperature phosphorescence for optical storage and logic compilation applications.