Cargando…
Extracellular vesicles produced by immunomodulatory cells harboring OX40 ligand and 4-1BB ligand enhance antitumor immunity
Genetically modified tumor cells harboring immunomodulators may be used as therapeutic vaccines to stimulate antitumor immunity. The therapeutic benefit of these tumor vaccines is extensively investigated and mechanisms by which they boost antitumor response may be further explored. Tumor cells are...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7495001/ https://www.ncbi.nlm.nih.gov/pubmed/32939048 http://dx.doi.org/10.1038/s41598-020-72122-3 |
Sumario: | Genetically modified tumor cells harboring immunomodulators may be used as therapeutic vaccines to stimulate antitumor immunity. The therapeutic benefit of these tumor vaccines is extensively investigated and mechanisms by which they boost antitumor response may be further explored. Tumor cells are large secretors of extracellular vesicles (EVs). These EVs are able to vehiculate RNA and proteins to target cells, and engineered EVs also vehiculate recombinant proteins. In this study, we explore immunomodulatory properties of EVs derived from antitumor vaccines expressing the TNFSF ligands 4-1BBL and OX40L, modulating immune response mediated by immune cells and eliminating tumors. Our results suggest that the EVs secreted by genetically modified tumor cells harboring TNFSF ligands can induce T cell proliferation, inhibit the transcription factor FoxP3, associated with the maintenance of Treg phenotype, and enhance antitumor activity mediated by immune cells. The immunomodulatory extracellular vesicles have potential to be further engineered for developing new approaches for cancer therapy. |
---|