Cargando…
Validation of a Machine Learning Model to Predict Childhood Lead Poisoning
IMPORTANCE: Childhood lead poisoning causes irreversible neurobehavioral deficits, but current practice is secondary prevention. OBJECTIVE: To validate a machine learning (random forest) prediction model of elevated blood lead levels (EBLLs) by comparison with a parsimonious logistic regression. DES...
Autores principales: | Potash, Eric, Ghani, Rayid, Walsh, Joe, Jorgensen, Emile, Lohff, Cortland, Prachand, Nik, Mansour, Raed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7495240/ https://www.ncbi.nlm.nih.gov/pubmed/32936296 http://dx.doi.org/10.1001/jamanetworkopen.2020.12734 |
Ejemplares similares
-
Prediction and validation of hemodialysis duration in acute methanol poisoning
por: Lachance, Philippe, et al.
Publicado: (2015) -
Emerging aspects of assessing lead poisoning in childhood
por: Jones, AL
Publicado: (2009) -
Childhood Lead Poisoning in China: Challenges and Opportunities
por: Yan, Chong-huai, et al.
Publicado: (2013) -
Massive Childhood Lead Poisoning: The Price of Nigerian Gold
por: Burton, Adrian
Publicado: (2012) -
The Status of Childhood Lead Poisoning and Prevention in Nevada, USA
por: Rothweiler, Anne M., et al.
Publicado: (2007)