Cargando…
Time-restricted feeding alters lipid and amino acid metabolite rhythmicity without perturbing clock gene expression
Time-restricted feeding (TRF) improves metabolism independent of dietary macronutrient composition or energy restriction. To elucidate mechanisms underpinning the effects of short-term TRF, we investigated skeletal muscle and serum metabolic and transcriptomic profiles from 11 men with overweight/ob...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7495469/ https://www.ncbi.nlm.nih.gov/pubmed/32938935 http://dx.doi.org/10.1038/s41467-020-18412-w |
_version_ | 1783582929743511552 |
---|---|
author | Lundell, Leonidas S. Parr, Evelyn B. Devlin, Brooke L. Ingerslev, Lars R. Altıntaş, Ali Sato, Shogo Sassone-Corsi, Paolo Barrès, Romain Zierath, Juleen R. Hawley, John A. |
author_facet | Lundell, Leonidas S. Parr, Evelyn B. Devlin, Brooke L. Ingerslev, Lars R. Altıntaş, Ali Sato, Shogo Sassone-Corsi, Paolo Barrès, Romain Zierath, Juleen R. Hawley, John A. |
author_sort | Lundell, Leonidas S. |
collection | PubMed |
description | Time-restricted feeding (TRF) improves metabolism independent of dietary macronutrient composition or energy restriction. To elucidate mechanisms underpinning the effects of short-term TRF, we investigated skeletal muscle and serum metabolic and transcriptomic profiles from 11 men with overweight/obesity after TRF (8 h day(−1)) and extended feeding (EXF, 15 h day(−1)) in a randomised cross-over design (trial registration: ACTRN12617000165381). Here we show that muscle core clock gene expression was similar after both interventions. TRF increases the amplitude of oscillating muscle transcripts, but not muscle or serum metabolites. In muscle, TRF induces rhythmicity of several amino acid transporter genes and metabolites. In serum, lipids are the largest class of periodic metabolites, while the majority of phase-shifted metabolites are amino acid related. In conclusion, short-term TRF in overweight men affects the rhythmicity of serum and muscle metabolites and regulates the rhythmicity of genes controlling amino acid transport, without perturbing core clock gene expression. |
format | Online Article Text |
id | pubmed-7495469 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-74954692020-10-01 Time-restricted feeding alters lipid and amino acid metabolite rhythmicity without perturbing clock gene expression Lundell, Leonidas S. Parr, Evelyn B. Devlin, Brooke L. Ingerslev, Lars R. Altıntaş, Ali Sato, Shogo Sassone-Corsi, Paolo Barrès, Romain Zierath, Juleen R. Hawley, John A. Nat Commun Article Time-restricted feeding (TRF) improves metabolism independent of dietary macronutrient composition or energy restriction. To elucidate mechanisms underpinning the effects of short-term TRF, we investigated skeletal muscle and serum metabolic and transcriptomic profiles from 11 men with overweight/obesity after TRF (8 h day(−1)) and extended feeding (EXF, 15 h day(−1)) in a randomised cross-over design (trial registration: ACTRN12617000165381). Here we show that muscle core clock gene expression was similar after both interventions. TRF increases the amplitude of oscillating muscle transcripts, but not muscle or serum metabolites. In muscle, TRF induces rhythmicity of several amino acid transporter genes and metabolites. In serum, lipids are the largest class of periodic metabolites, while the majority of phase-shifted metabolites are amino acid related. In conclusion, short-term TRF in overweight men affects the rhythmicity of serum and muscle metabolites and regulates the rhythmicity of genes controlling amino acid transport, without perturbing core clock gene expression. Nature Publishing Group UK 2020-09-16 /pmc/articles/PMC7495469/ /pubmed/32938935 http://dx.doi.org/10.1038/s41467-020-18412-w Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Lundell, Leonidas S. Parr, Evelyn B. Devlin, Brooke L. Ingerslev, Lars R. Altıntaş, Ali Sato, Shogo Sassone-Corsi, Paolo Barrès, Romain Zierath, Juleen R. Hawley, John A. Time-restricted feeding alters lipid and amino acid metabolite rhythmicity without perturbing clock gene expression |
title | Time-restricted feeding alters lipid and amino acid metabolite rhythmicity without perturbing clock gene expression |
title_full | Time-restricted feeding alters lipid and amino acid metabolite rhythmicity without perturbing clock gene expression |
title_fullStr | Time-restricted feeding alters lipid and amino acid metabolite rhythmicity without perturbing clock gene expression |
title_full_unstemmed | Time-restricted feeding alters lipid and amino acid metabolite rhythmicity without perturbing clock gene expression |
title_short | Time-restricted feeding alters lipid and amino acid metabolite rhythmicity without perturbing clock gene expression |
title_sort | time-restricted feeding alters lipid and amino acid metabolite rhythmicity without perturbing clock gene expression |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7495469/ https://www.ncbi.nlm.nih.gov/pubmed/32938935 http://dx.doi.org/10.1038/s41467-020-18412-w |
work_keys_str_mv | AT lundellleonidass timerestrictedfeedingalterslipidandaminoacidmetaboliterhythmicitywithoutperturbingclockgeneexpression AT parrevelynb timerestrictedfeedingalterslipidandaminoacidmetaboliterhythmicitywithoutperturbingclockgeneexpression AT devlinbrookel timerestrictedfeedingalterslipidandaminoacidmetaboliterhythmicitywithoutperturbingclockgeneexpression AT ingerslevlarsr timerestrictedfeedingalterslipidandaminoacidmetaboliterhythmicitywithoutperturbingclockgeneexpression AT altıntasali timerestrictedfeedingalterslipidandaminoacidmetaboliterhythmicitywithoutperturbingclockgeneexpression AT satoshogo timerestrictedfeedingalterslipidandaminoacidmetaboliterhythmicitywithoutperturbingclockgeneexpression AT sassonecorsipaolo timerestrictedfeedingalterslipidandaminoacidmetaboliterhythmicitywithoutperturbingclockgeneexpression AT barresromain timerestrictedfeedingalterslipidandaminoacidmetaboliterhythmicitywithoutperturbingclockgeneexpression AT zierathjuleenr timerestrictedfeedingalterslipidandaminoacidmetaboliterhythmicitywithoutperturbingclockgeneexpression AT hawleyjohna timerestrictedfeedingalterslipidandaminoacidmetaboliterhythmicitywithoutperturbingclockgeneexpression |