Cargando…

The Role of DNA Methylation in Transcriptional Regulation of Pro-Nociceptive Genes in Rat Trigeminal Ganglia

Epigenetic modulation by DNA methylation is associated with aberrant gene expression in sensory neurons, which consequently leads to pathological pain responses. In this study, we sought to investigate whether peripheral inflammation alters global DNA methylation in trigeminal ganglia (TG) and resul...

Descripción completa

Detalles Bibliográficos
Autores principales: Bai, Guang, Ross, Holly, Zhang, Youping, Lee, KiSeok, Ro, Jin Y
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7495519/
https://www.ncbi.nlm.nih.gov/pubmed/32974606
http://dx.doi.org/10.1177/2516865720938677
_version_ 1783582939110440960
author Bai, Guang
Ross, Holly
Zhang, Youping
Lee, KiSeok
Ro, Jin Y
author_facet Bai, Guang
Ross, Holly
Zhang, Youping
Lee, KiSeok
Ro, Jin Y
author_sort Bai, Guang
collection PubMed
description Epigenetic modulation by DNA methylation is associated with aberrant gene expression in sensory neurons, which consequently leads to pathological pain responses. In this study, we sought to investigate whether peripheral inflammation alters global DNA methylation in trigeminal ganglia (TG) and results in abnormal expression of pro-nociceptive genes. Our results show that peripheral inflammation remotely reduced the level of global DNA methylation in rat TG with a concurrent reduction in DNMT1 and DNMT3a expression. Using unbiased steps, we selected the following pro-nociceptive candidate genes that are potentially regulated by DNA methylation: TRPV1, TRPA1, P2X3, and PIEZO2. Inhibition of DNMT with 5-Aza-dC in dissociated TG cells produced dose-dependent upregulation of TRPV1, TRPA1, and P2X3. Systemic treatment of animals with 5-Aza-dC significantly increased the expression of TRPV1, TRPA1, and PIEZO2 in TG. Furthermore, the overexpression of DNMT3a, as delivered by a lentiviral vector, significantly downregulated TRPV1 and PIEZO2 expression and also reliably decreased TRPA1 and P2X3 transcripts. MeDIP revealed that this overexpression also significantly enhanced methylation of CGIs associated with TRPV1 and TRPA1. In addition, bisulfite sequencing data indicated that the CGI associated with TRPA1 was methylated in a pattern catalyzed by DNMT3a. Taken together, our results show that all 4 pro-nociceptive genes are subject to epigenetic modulation via DNA methylation, likely via DNMT3a under inflammatory conditions. These findings provide the first evidence for the functional importance of DNA methylation as an epigenetic factor in the transcription of pro-nociceptive genes in TG that are implicated in pathological orofacial pain responses.
format Online
Article
Text
id pubmed-7495519
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher SAGE Publications
record_format MEDLINE/PubMed
spelling pubmed-74955192020-09-23 The Role of DNA Methylation in Transcriptional Regulation of Pro-Nociceptive Genes in Rat Trigeminal Ganglia Bai, Guang Ross, Holly Zhang, Youping Lee, KiSeok Ro, Jin Y Epigenet Insights Original Research Epigenetic modulation by DNA methylation is associated with aberrant gene expression in sensory neurons, which consequently leads to pathological pain responses. In this study, we sought to investigate whether peripheral inflammation alters global DNA methylation in trigeminal ganglia (TG) and results in abnormal expression of pro-nociceptive genes. Our results show that peripheral inflammation remotely reduced the level of global DNA methylation in rat TG with a concurrent reduction in DNMT1 and DNMT3a expression. Using unbiased steps, we selected the following pro-nociceptive candidate genes that are potentially regulated by DNA methylation: TRPV1, TRPA1, P2X3, and PIEZO2. Inhibition of DNMT with 5-Aza-dC in dissociated TG cells produced dose-dependent upregulation of TRPV1, TRPA1, and P2X3. Systemic treatment of animals with 5-Aza-dC significantly increased the expression of TRPV1, TRPA1, and PIEZO2 in TG. Furthermore, the overexpression of DNMT3a, as delivered by a lentiviral vector, significantly downregulated TRPV1 and PIEZO2 expression and also reliably decreased TRPA1 and P2X3 transcripts. MeDIP revealed that this overexpression also significantly enhanced methylation of CGIs associated with TRPV1 and TRPA1. In addition, bisulfite sequencing data indicated that the CGI associated with TRPA1 was methylated in a pattern catalyzed by DNMT3a. Taken together, our results show that all 4 pro-nociceptive genes are subject to epigenetic modulation via DNA methylation, likely via DNMT3a under inflammatory conditions. These findings provide the first evidence for the functional importance of DNA methylation as an epigenetic factor in the transcription of pro-nociceptive genes in TG that are implicated in pathological orofacial pain responses. SAGE Publications 2020-09-10 /pmc/articles/PMC7495519/ /pubmed/32974606 http://dx.doi.org/10.1177/2516865720938677 Text en © The Author(s) 2020 https://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
spellingShingle Original Research
Bai, Guang
Ross, Holly
Zhang, Youping
Lee, KiSeok
Ro, Jin Y
The Role of DNA Methylation in Transcriptional Regulation of Pro-Nociceptive Genes in Rat Trigeminal Ganglia
title The Role of DNA Methylation in Transcriptional Regulation of Pro-Nociceptive Genes in Rat Trigeminal Ganglia
title_full The Role of DNA Methylation in Transcriptional Regulation of Pro-Nociceptive Genes in Rat Trigeminal Ganglia
title_fullStr The Role of DNA Methylation in Transcriptional Regulation of Pro-Nociceptive Genes in Rat Trigeminal Ganglia
title_full_unstemmed The Role of DNA Methylation in Transcriptional Regulation of Pro-Nociceptive Genes in Rat Trigeminal Ganglia
title_short The Role of DNA Methylation in Transcriptional Regulation of Pro-Nociceptive Genes in Rat Trigeminal Ganglia
title_sort role of dna methylation in transcriptional regulation of pro-nociceptive genes in rat trigeminal ganglia
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7495519/
https://www.ncbi.nlm.nih.gov/pubmed/32974606
http://dx.doi.org/10.1177/2516865720938677
work_keys_str_mv AT baiguang theroleofdnamethylationintranscriptionalregulationofpronociceptivegenesinrattrigeminalganglia
AT rossholly theroleofdnamethylationintranscriptionalregulationofpronociceptivegenesinrattrigeminalganglia
AT zhangyouping theroleofdnamethylationintranscriptionalregulationofpronociceptivegenesinrattrigeminalganglia
AT leekiseok theroleofdnamethylationintranscriptionalregulationofpronociceptivegenesinrattrigeminalganglia
AT rojiny theroleofdnamethylationintranscriptionalregulationofpronociceptivegenesinrattrigeminalganglia
AT baiguang roleofdnamethylationintranscriptionalregulationofpronociceptivegenesinrattrigeminalganglia
AT rossholly roleofdnamethylationintranscriptionalregulationofpronociceptivegenesinrattrigeminalganglia
AT zhangyouping roleofdnamethylationintranscriptionalregulationofpronociceptivegenesinrattrigeminalganglia
AT leekiseok roleofdnamethylationintranscriptionalregulationofpronociceptivegenesinrattrigeminalganglia
AT rojiny roleofdnamethylationintranscriptionalregulationofpronociceptivegenesinrattrigeminalganglia