Cargando…
Liver imaging features by convolutional neural network to predict the metachronous liver metastasis in stage I-III colorectal cancer patients based on preoperative abdominal CT scan
BACKGROUND: Introducing deep learning approach to medical images has rendered a large amount of un-decoded information into usage in clinical research. But mostly, it has been focusing on the performance of the prediction modeling for disease-related entity, but not on the clinical implication of th...
Autores principales: | Lee, Sangwoo, Choe, Eun Kyung, Kim, So Yeon, Kim, Hua Sun, Park, Kyu Joo, Kim, Dokyoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7495853/ https://www.ncbi.nlm.nih.gov/pubmed/32938394 http://dx.doi.org/10.1186/s12859-020-03686-0 |
Ejemplares similares
-
Prognostic Effect of Inflammatory Genes on Stage I–III Colorectal Cancer—Integrative Analysis of TCGA Data
por: Choe, Eun Kyung, et al.
Publicado: (2021) -
Assessment of Primary Colorectal Cancer CT Radiomics to Predict Metachronous Liver Metastasis
por: Li, Yue, et al.
Publicado: (2022) -
Alagille Syndrome Candidates for Liver Transplantation: Differentiation from End-Stage Biliary Atresia Using Preoperative CT
por: Hwang, Sook Min, et al.
Publicado: (2016) -
Limited detection of small (≤ 10 mm) colorectal liver metastasis at preoperative CT in patients undergoing liver resection
por: Ko, Yousun, et al.
Publicado: (2017) -
Automatic bolus tracking in abdominal CT scans with convolutional neural networks
por: Li, Angela T., et al.
Publicado: (2023)