Cargando…
Model-based clustering for flow and mass cytometry data with clinical information
BACKGROUND: High-dimensional flow cytometry and mass cytometry allow systemic-level characterization of more than 10 protein profiles at single-cell resolution and provide a much broader landscape in many biological applications, such as disease diagnosis and prediction of clinical outcome. When ass...
Autores principales: | Abe, Ko, Minoura, Kodai, Maeda, Yuka, Nishikawa, Hiroyoshi, Shimamura, Teppei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7495858/ https://www.ncbi.nlm.nih.gov/pubmed/32938365 http://dx.doi.org/10.1186/s12859-020-03671-7 |
Ejemplares similares
-
Model-based cell clustering and population tracking for time-series flow cytometry data
por: Minoura, Kodai, et al.
Publicado: (2019) -
CYBERTRACK2.0: zero-inflated model-based cell clustering and population tracking method for longitudinal mass cytometry data
por: Minoura, Kodai, et al.
Publicado: (2020) -
A mixture-of-experts deep generative model for integrated analysis of single-cell multiomics data
por: Minoura, Kodai, et al.
Publicado: (2021) -
Hierarchical non-negative matrix factorization using clinical information for microbial communities
por: Abe, Ko, et al.
Publicado: (2021) -
Automated subset identification and characterization pipeline for multidimensional flow and mass cytometry data clustering and visualization
por: Meehan, Stephen, et al.
Publicado: (2019)