Cargando…
Molecular representations in AI-driven drug discovery: a review and practical guide
The technological advances of the past century, marked by the computer revolution and the advent of high-throughput screening technologies in drug discovery, opened the path to the computational analysis and visualization of bioactive molecules. For this purpose, it became necessary to represent mol...
Autores principales: | David, Laurianne, Thakkar, Amol, Mercado, Rocío, Engkvist, Ola |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7495975/ https://www.ncbi.nlm.nih.gov/pubmed/33431035 http://dx.doi.org/10.1186/s13321-020-00460-5 |
Ejemplares similares
-
Retrosynthetic accessibility score (RAscore) – rapid machine learned synthesizability classification from AI driven retrosynthetic planning
por: Thakkar, Amol, et al.
Publicado: (2021) -
AiZynthFinder: a fast, robust and flexible open-source software for retrosynthetic planning
por: Genheden, Samuel, et al.
Publicado: (2020) -
From intuition to AI: evolution of small molecule representations in drug discovery
por: McGibbon, Miles, et al.
Publicado: (2023) -
AI-driven drug discovery: A boon against COVID-19?
por: Chandra Kaushik, Aman, et al.
Publicado: (2020) -
Datasets and their influence on the development of computer assisted synthesis planning tools in the pharmaceutical domain
por: Thakkar, Amol, et al.
Publicado: (2019)