Cargando…

Superwettable PVDF/PVDF-g-PEGMA Ultrafiltration Membranes

[Image: see text] Poly(vinylidene fluoride) (PVDF) is a common and inexpensive polymeric material used for membrane fabrication, but the inherent hydrophobicity of this polymer induces severe membranes fouling, which limits its applications and further developments. Herein, we prepared superwettable...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Qidong, Tiraferri, Alberto, Li, Tong, Xie, Wancen, Chang, Haiqing, Bai, Yuhua, Liu, Baicang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7496008/
https://www.ncbi.nlm.nih.gov/pubmed/32954198
http://dx.doi.org/10.1021/acsomega.0c03429
Descripción
Sumario:[Image: see text] Poly(vinylidene fluoride) (PVDF) is a common and inexpensive polymeric material used for membrane fabrication, but the inherent hydrophobicity of this polymer induces severe membranes fouling, which limits its applications and further developments. Herein, we prepared superwettable PVDF membranes by selecting suitable polymer concentration and blending with PVDF-graft-poly(ethylene glycol) methyl ether methacrylate (PVDF-g-PEGMA). This fascinating interfacial phenomenon causes the contact angle of water droplets to drop from the initial value of over 70° to virtually 0° in 0.5 s for the best fabricated membrane. The wetting properties of the membranes were studied by calculating the surface free energy by surface thermodynamic analysis, by evaluating the peak height ratio from Raman spectra, and other surface characterization methods. The superwettability phenomenon is the result of the synergetic effects of high surface free energy, the Wenzel model of wetting, and the crystalline phase of PVDF. Besides superwettability, the PVDF/PVDF-g-PEGMA membranes show great improvements in flux performance, sodium alginate (SA) rejection, and flux recovery upon fouling.