Cargando…
On the Dynamic Interaction of n‐Butane with Imidazolium‐Based Ionic Liquids
The impact of a reactant from the gas phase on the surface of a liquid and its transfer through this gas/liquid interface are crucial for various concepts applying ionic liquids (ILs) in catalysis. We investigated the first step of the adsorption dynamics of n‐butane on a series of 1‐alkyl‐3‐methyli...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7496159/ https://www.ncbi.nlm.nih.gov/pubmed/32428352 http://dx.doi.org/10.1002/anie.202005991 |
Sumario: | The impact of a reactant from the gas phase on the surface of a liquid and its transfer through this gas/liquid interface are crucial for various concepts applying ionic liquids (ILs) in catalysis. We investigated the first step of the adsorption dynamics of n‐butane on a series of 1‐alkyl‐3‐methylimidazolium bis(trifluoromethanesulfonyl)imide ILs ([C(n)C(1)Im][Tf(2)N]; n=1, 2, 3, 8). Using a supersonic molecular beam in ultra‐high vacuum, the trapping of n‐butane on the frozen ILs was determined as a function of surface temperature, between 90 and 125 K. On the C(8)‐ and C(3)‐ILs, n‐butane adsorbs at 90 K with an initial trapping probability of ≈0.89. The adsorption energy increases with increasing length of the IL alkyl chain, whereas the ionic headgroups seem to interact only weakly with n‐butane. The absence of adsorption on the C(1)‐ and C(2)‐ILs is attributed to a too short residence time on the IL surface to form nuclei for condensation even at 90 K. |
---|