Cargando…
Shared Metabolic Profile of Caffeine in Parkinsonian Disorders
OBJECTIVE: The objective of this study was to determine comprehensive metabolic changes of caffeine in the serum of patients with parkinsonian disorders including Parkinson's disease (PD), progressive supranuclear palsy (PSP), and multiple system atrophy (MSA) and to compare this with healthy c...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7496239/ https://www.ncbi.nlm.nih.gov/pubmed/32357260 http://dx.doi.org/10.1002/mds.28068 |
Sumario: | OBJECTIVE: The objective of this study was to determine comprehensive metabolic changes of caffeine in the serum of patients with parkinsonian disorders including Parkinson's disease (PD), progressive supranuclear palsy (PSP), and multiple system atrophy (MSA) and to compare this with healthy control serum. METHODS: Serum levels of caffeine and its 11 downstream metabolites from independent double cohorts consisting of PD (n = 111, 160), PSP (n = 30, 19), MSA (n = 23, 17), and healthy controls (n = 43, 31) were examined by liquid chromatography–mass spectrometry. The association of each metabolite with clinical parameters and medication was investigated. Mutations in caffeine‐associated genes were investigated by direct sequencing. RESULTS: A total of 9 metabolites detected in more than 50% of participants in both cohorts were decreased in 3 parkinsonian disorders compared with healthy controls without any significant association with age at sampling, sex, or disease severity (Hoehn and Yahr stage and Unified Parkinson's Disease Rating Scale motor section) in PD, and levodopa dose or levodopa equivalent dose in PSP and MSA. Of the 9 detected metabolites, 8 in PD, 5 in PSP, and 3 in MSA were significantly decreased in both cohorts even after normalizing to daily caffeine consumption. No significant genetic variations in CYP1A2 or CYP2E1 were detected when compared with controls. CONCLUSION: Serum caffeine metabolic profiles in 3 parkinsonian diseases show a high level of overlap, indicative of a common potential mechanism such as caffeine malabsorption from the small intestine, hypermetabolism, increased clearance of caffeine, and/or reduced caffeine consumption. © 2020 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society. |
---|