Cargando…

Bone mineral density, mechanical properties, and trabecular orientation of cancellous bone within humeral heads affected by advanced shoulder arthropathy

The mechanical properties of cancellous bone in the humeral head are increasingly interesting due to the increased popularity of stemless prosthetic fixation in the cancellous bone of the metaphysis. Age or pathology‐related systemic osteoporosis, inactivity, or pathology of the shoulder joint may i...

Descripción completa

Detalles Bibliográficos
Autores principales: Zdravkovic, Vilijam, Kaufmann, Rolf, Neels, Antonia, Dommann, Alex, Hofmann, Jürgen, Jost, Bernhard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7496343/
https://www.ncbi.nlm.nih.gov/pubmed/32073163
http://dx.doi.org/10.1002/jor.24633
_version_ 1783583075510255616
author Zdravkovic, Vilijam
Kaufmann, Rolf
Neels, Antonia
Dommann, Alex
Hofmann, Jürgen
Jost, Bernhard
author_facet Zdravkovic, Vilijam
Kaufmann, Rolf
Neels, Antonia
Dommann, Alex
Hofmann, Jürgen
Jost, Bernhard
author_sort Zdravkovic, Vilijam
collection PubMed
description The mechanical properties of cancellous bone in the humeral head are increasingly interesting due to the increased popularity of stemless prosthetic fixation in the cancellous bone of the metaphysis. Age or pathology‐related systemic osteoporosis, inactivity, or pathology of the shoulder joint may influence the primary bonding of implants that rely on good cancellous bone quality. We assessed the bone mineral density (BMD) and anisotropy using micro‐computed tomography (micro‐CT) (0.04 mm voxel size) and correlated the results with indentation load/displacement response. Resected parts of humeral heads (from patients undergoing total shoulder replacement, n = 18) were used as probes. The region of interest was defined as 2 mm medial from the resection plane, presuming that it mirrored the bone quality lateral to the resection plane. The indentation tests were performed with a large probe (diameter 10 mm) in a single destructive loading procedure. The BMD and trabecular orientation were determined by micro‐CT. Our results showed a correlation between the BMD and the slope of the load/displacement curve. Furthermore, the trabeculae were predominantly oriented orthogonal to the joint surface. In conclusion, the predominant factor determining the bone quality and mechanical resistance to pressure appears to be the BMD, while trabecular orientation could not be related to load/displacement response. Statement of clinical significance: Bone quality predominately determines the mechanical properties of cancellous bone. This might be crucial when prosthetic implants need to be anchored in metaphyseal bone. Therefore, clinical decision‐making processes should also include local BMD measurements.
format Online
Article
Text
id pubmed-7496343
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-74963432020-09-25 Bone mineral density, mechanical properties, and trabecular orientation of cancellous bone within humeral heads affected by advanced shoulder arthropathy Zdravkovic, Vilijam Kaufmann, Rolf Neels, Antonia Dommann, Alex Hofmann, Jürgen Jost, Bernhard J Orthop Res Research Articles The mechanical properties of cancellous bone in the humeral head are increasingly interesting due to the increased popularity of stemless prosthetic fixation in the cancellous bone of the metaphysis. Age or pathology‐related systemic osteoporosis, inactivity, or pathology of the shoulder joint may influence the primary bonding of implants that rely on good cancellous bone quality. We assessed the bone mineral density (BMD) and anisotropy using micro‐computed tomography (micro‐CT) (0.04 mm voxel size) and correlated the results with indentation load/displacement response. Resected parts of humeral heads (from patients undergoing total shoulder replacement, n = 18) were used as probes. The region of interest was defined as 2 mm medial from the resection plane, presuming that it mirrored the bone quality lateral to the resection plane. The indentation tests were performed with a large probe (diameter 10 mm) in a single destructive loading procedure. The BMD and trabecular orientation were determined by micro‐CT. Our results showed a correlation between the BMD and the slope of the load/displacement curve. Furthermore, the trabeculae were predominantly oriented orthogonal to the joint surface. In conclusion, the predominant factor determining the bone quality and mechanical resistance to pressure appears to be the BMD, while trabecular orientation could not be related to load/displacement response. Statement of clinical significance: Bone quality predominately determines the mechanical properties of cancellous bone. This might be crucial when prosthetic implants need to be anchored in metaphyseal bone. Therefore, clinical decision‐making processes should also include local BMD measurements. John Wiley and Sons Inc. 2020-03-08 2020-09 /pmc/articles/PMC7496343/ /pubmed/32073163 http://dx.doi.org/10.1002/jor.24633 Text en © 2020 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Zdravkovic, Vilijam
Kaufmann, Rolf
Neels, Antonia
Dommann, Alex
Hofmann, Jürgen
Jost, Bernhard
Bone mineral density, mechanical properties, and trabecular orientation of cancellous bone within humeral heads affected by advanced shoulder arthropathy
title Bone mineral density, mechanical properties, and trabecular orientation of cancellous bone within humeral heads affected by advanced shoulder arthropathy
title_full Bone mineral density, mechanical properties, and trabecular orientation of cancellous bone within humeral heads affected by advanced shoulder arthropathy
title_fullStr Bone mineral density, mechanical properties, and trabecular orientation of cancellous bone within humeral heads affected by advanced shoulder arthropathy
title_full_unstemmed Bone mineral density, mechanical properties, and trabecular orientation of cancellous bone within humeral heads affected by advanced shoulder arthropathy
title_short Bone mineral density, mechanical properties, and trabecular orientation of cancellous bone within humeral heads affected by advanced shoulder arthropathy
title_sort bone mineral density, mechanical properties, and trabecular orientation of cancellous bone within humeral heads affected by advanced shoulder arthropathy
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7496343/
https://www.ncbi.nlm.nih.gov/pubmed/32073163
http://dx.doi.org/10.1002/jor.24633
work_keys_str_mv AT zdravkovicvilijam bonemineraldensitymechanicalpropertiesandtrabecularorientationofcancellousbonewithinhumeralheadsaffectedbyadvancedshoulderarthropathy
AT kaufmannrolf bonemineraldensitymechanicalpropertiesandtrabecularorientationofcancellousbonewithinhumeralheadsaffectedbyadvancedshoulderarthropathy
AT neelsantonia bonemineraldensitymechanicalpropertiesandtrabecularorientationofcancellousbonewithinhumeralheadsaffectedbyadvancedshoulderarthropathy
AT dommannalex bonemineraldensitymechanicalpropertiesandtrabecularorientationofcancellousbonewithinhumeralheadsaffectedbyadvancedshoulderarthropathy
AT hofmannjurgen bonemineraldensitymechanicalpropertiesandtrabecularorientationofcancellousbonewithinhumeralheadsaffectedbyadvancedshoulderarthropathy
AT jostbernhard bonemineraldensitymechanicalpropertiesandtrabecularorientationofcancellousbonewithinhumeralheadsaffectedbyadvancedshoulderarthropathy