Cargando…

Influence of cosmetic formulations on the skin's circadian clock

OBJECTIVE: The circadian rhythm was set into focus by awarding the Nobel Price of Physiology/Medicine to Jeffrey Hall, Michael Rosbash and Michael Young in late 2017. Numerous publications elucidated the molecular mechanisms driving the circadian biorhythms of our body, peripheral organs and each si...

Descripción completa

Detalles Bibliográficos
Autores principales: Hettwer, S., Besic Gyenge, E., Obermayer, B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7496414/
https://www.ncbi.nlm.nih.gov/pubmed/32277494
http://dx.doi.org/10.1111/ics.12623
Descripción
Sumario:OBJECTIVE: The circadian rhythm was set into focus by awarding the Nobel Price of Physiology/Medicine to Jeffrey Hall, Michael Rosbash and Michael Young in late 2017. Numerous publications elucidated the molecular mechanisms driving the circadian biorhythms of our body, peripheral organs and each single cell. However, there is minor knowledge on the circadian rhythm of the skin, which has its own peripheral circadian clock in contact with cosmetic formulations. The skin's epidermal clock is excessively influenced by environmental factors like UV radiation or modern lifestyle, which may induce epidermal jetlag. Here, we give an overview on the current knowledge about the epidermal circadian clock and provide a cosmetic solution to protect and preserve the biorhythm of the skin. METHODS: Quantitative RT‐PCR to analyse the gene expression of circadian clock genes and the downstream DNA repair gene OGG1 in keratinocytes irradiated with UV‐B. In vivo study to determine skin parameters dependent on the circadian cycle and interference of cosmetic formulations to them by assessment of morning and evening values at each measurement day after 28, 56 and 84 days of the study. RESULTS: UV‐B irradiation leads to a pronounced delay in circadian clock and downstream gene expression which interferes in the proper function of epidermal stem cells and as thus skin function. The use of a cosmetic active ingredient prevents cyclobutane pyrimidine dimer formation, protects epidermal stem cells and resets the circadian gene expression. It preserves the circadian changes in skin hydration, reduces daily fluctuations of skin redness and strengthens the skin barrier. CONCLUSION: The skin has its own circadian biorhythm to gain full functionality. Interruption of this oscillation will lead to functional impairments. Here we show a cosmetic solution to protect and preserve the skin's circadian rhythm. DNA protection, ROS elimination and stimulation of circadian gene expression seem to be crucial to keep the skin in balance.