Cargando…

Site‐Specific Iron Substitution in STA‐28, a Large Pore Aluminophosphate Zeotype Prepared by Using 1,10‐Phenanthrolines as Framework‐Bound Templates

An AlPO(4) zeotype has been prepared using the aromatic diamine 1,10‐phenanthroline and some of its methylated analogues as templates. In each case the two template N atoms bind to a specific framework Al site to expand its coordination to the unusual octahedral AlO(4)N(2) environment. Furthermore,...

Descripción completa

Detalles Bibliográficos
Autores principales: Watts, Abigail E., Lozinska, Magdalena M., Slawin, Alexandra M. Z., Mayoral, Alvaro, Dawson, Daniel M., Ashbrook, Sharon E., Bode, Bela E., Dugulan, A. Iulian, Shannon, Mervyn D., Cox, Paul A., Turrina, Alessandro, Wright, Paul A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7496423/
https://www.ncbi.nlm.nih.gov/pubmed/32432353
http://dx.doi.org/10.1002/anie.202005558
Descripción
Sumario:An AlPO(4) zeotype has been prepared using the aromatic diamine 1,10‐phenanthroline and some of its methylated analogues as templates. In each case the two template N atoms bind to a specific framework Al site to expand its coordination to the unusual octahedral AlO(4)N(2) environment. Furthermore, using this framework‐bound template, Fe atoms can be included selectively at this site in the framework by direct synthesis, as confirmed by annular dark field scanning transmission electron microscopy and Rietveld refinement. Calcination removes the organic molecules to give large pore framework solids, with BET surface areas up to 540 m(2) g(−1) and two perpendicular sets of channels that intersect to give pore space connected by 12‐ring openings along all crystallographic directions.