Cargando…

A Composite Tissue Engineered Bone Material Consisting of Bone Mesenchymal Stem Cells, Bone Morphogenetic Protein 9 (BMP9) Gene Lentiviral Vector, and P3HB4HB Thermogel (BMSCs-LV-BMP9-P3HB4HB) Repairs Calvarial Skull Defects in Rats by Expression of Osteogenic Factors

BACKGROUND: Bone tissue engineering has been proven to be an appropriate approach for treating bone defects. This study aimed to investigate the effects and mechanism of a composite tissue engineered bone material consisting of bone mesenchymal stem cells (BMSCs), bone morphogenetic protein (BMP9) g...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Cheng, Ye, Chuan, Zhao, Chen, Liao, Junyi, Li, Yuwan, Chen, Hong, Huang, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Scientific Literature, Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7496453/
https://www.ncbi.nlm.nih.gov/pubmed/32894745
http://dx.doi.org/10.12659/MSM.924666
_version_ 1783583100241969152
author Zhou, Cheng
Ye, Chuan
Zhao, Chen
Liao, Junyi
Li, Yuwan
Chen, Hong
Huang, Wei
author_facet Zhou, Cheng
Ye, Chuan
Zhao, Chen
Liao, Junyi
Li, Yuwan
Chen, Hong
Huang, Wei
author_sort Zhou, Cheng
collection PubMed
description BACKGROUND: Bone tissue engineering has been proven to be an appropriate approach for treating bone defects. This study aimed to investigate the effects and mechanism of a composite tissue engineered bone material consisting of bone mesenchymal stem cells (BMSCs), bone morphogenetic protein (BMP9) gene lentiviral vector, and P3HB4HB thermogel (BMSCs-LV-BMP9-P3HB4HB) on calvarial skull defects in rats. MATERIAL/METHODS: LV-BMP9 viral vector was structured and infected to BMSCs-P3HB4HB composite scaffold, which was named as BMSCs-P3HB4HB composite bone repair material. Adipogenic differentiation was determined by oil-red O (ORO) and alkaline phosphatase (ALP) staining. Osteogenic differentiation was measured using Alizarin red staining. Cell viability was examined using Cell-Counting Kit-8 (CCK-8) assay. Protein expression of osteogenic factors, including BMP9, runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), osteopontin (OPN), and osterix (OSX), was detected with Western blot assay and immunohistochemistry. mRNA of these osteogenic factors was examined by RT-PCR. Histological changes were examined with hematoxylin and eosin (H&E) and Masson’s trichrome staining. Bone repair was measured using micro-computed tomography (micro-CT). RESULTS: BMSCs and LV-BMP9-infected BMSCs demonstrated adipogenic and osteogenic differentiation potential. BMSCs-P3HB4HB scaffold demonstrated good cell-tissue compatibility. BMSCs-LV-BMP9-P3HB4HB exhibited significantly higher osteogenic ability and cell viability of BMSCs compared to BMSCs-LV-P3HB4HB (p<0.05). BMSCs-LV-BMP9-P3HB4HB significantly promoted osteogenic factors (RUNX2, OCN, OPN, and OSX) expression compared to the BMSCs-LV-P3HB4HB group (p<0.05) in both BMSCs and in calvarial defect rats. BMSCs-LV-BMP9-P3HB4HB demonstrated stronger repair ability. BMSCs-LV-BMP9-P3HB4HB significantly alleviated pathological injury and increased collagen fiber production compared to the BMSCs-LV-P3HB4HB group (p<0.05). CONCLUSIONS: BMSCs-LV-BMP9-P3HB4HB composite bone repair material can effectively repair injured skull tissues of calvarial defect rats through triggering osteogenic factors expression. The present generated bone repair material may have applications in tissue engineering in regeneration of bone defects.
format Online
Article
Text
id pubmed-7496453
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher International Scientific Literature, Inc.
record_format MEDLINE/PubMed
spelling pubmed-74964532020-10-01 A Composite Tissue Engineered Bone Material Consisting of Bone Mesenchymal Stem Cells, Bone Morphogenetic Protein 9 (BMP9) Gene Lentiviral Vector, and P3HB4HB Thermogel (BMSCs-LV-BMP9-P3HB4HB) Repairs Calvarial Skull Defects in Rats by Expression of Osteogenic Factors Zhou, Cheng Ye, Chuan Zhao, Chen Liao, Junyi Li, Yuwan Chen, Hong Huang, Wei Med Sci Monit Animal Study BACKGROUND: Bone tissue engineering has been proven to be an appropriate approach for treating bone defects. This study aimed to investigate the effects and mechanism of a composite tissue engineered bone material consisting of bone mesenchymal stem cells (BMSCs), bone morphogenetic protein (BMP9) gene lentiviral vector, and P3HB4HB thermogel (BMSCs-LV-BMP9-P3HB4HB) on calvarial skull defects in rats. MATERIAL/METHODS: LV-BMP9 viral vector was structured and infected to BMSCs-P3HB4HB composite scaffold, which was named as BMSCs-P3HB4HB composite bone repair material. Adipogenic differentiation was determined by oil-red O (ORO) and alkaline phosphatase (ALP) staining. Osteogenic differentiation was measured using Alizarin red staining. Cell viability was examined using Cell-Counting Kit-8 (CCK-8) assay. Protein expression of osteogenic factors, including BMP9, runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), osteopontin (OPN), and osterix (OSX), was detected with Western blot assay and immunohistochemistry. mRNA of these osteogenic factors was examined by RT-PCR. Histological changes were examined with hematoxylin and eosin (H&E) and Masson’s trichrome staining. Bone repair was measured using micro-computed tomography (micro-CT). RESULTS: BMSCs and LV-BMP9-infected BMSCs demonstrated adipogenic and osteogenic differentiation potential. BMSCs-P3HB4HB scaffold demonstrated good cell-tissue compatibility. BMSCs-LV-BMP9-P3HB4HB exhibited significantly higher osteogenic ability and cell viability of BMSCs compared to BMSCs-LV-P3HB4HB (p<0.05). BMSCs-LV-BMP9-P3HB4HB significantly promoted osteogenic factors (RUNX2, OCN, OPN, and OSX) expression compared to the BMSCs-LV-P3HB4HB group (p<0.05) in both BMSCs and in calvarial defect rats. BMSCs-LV-BMP9-P3HB4HB demonstrated stronger repair ability. BMSCs-LV-BMP9-P3HB4HB significantly alleviated pathological injury and increased collagen fiber production compared to the BMSCs-LV-P3HB4HB group (p<0.05). CONCLUSIONS: BMSCs-LV-BMP9-P3HB4HB composite bone repair material can effectively repair injured skull tissues of calvarial defect rats through triggering osteogenic factors expression. The present generated bone repair material may have applications in tissue engineering in regeneration of bone defects. International Scientific Literature, Inc. 2020-09-07 /pmc/articles/PMC7496453/ /pubmed/32894745 http://dx.doi.org/10.12659/MSM.924666 Text en © Med Sci Monit, 2020 This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/) )
spellingShingle Animal Study
Zhou, Cheng
Ye, Chuan
Zhao, Chen
Liao, Junyi
Li, Yuwan
Chen, Hong
Huang, Wei
A Composite Tissue Engineered Bone Material Consisting of Bone Mesenchymal Stem Cells, Bone Morphogenetic Protein 9 (BMP9) Gene Lentiviral Vector, and P3HB4HB Thermogel (BMSCs-LV-BMP9-P3HB4HB) Repairs Calvarial Skull Defects in Rats by Expression of Osteogenic Factors
title A Composite Tissue Engineered Bone Material Consisting of Bone Mesenchymal Stem Cells, Bone Morphogenetic Protein 9 (BMP9) Gene Lentiviral Vector, and P3HB4HB Thermogel (BMSCs-LV-BMP9-P3HB4HB) Repairs Calvarial Skull Defects in Rats by Expression of Osteogenic Factors
title_full A Composite Tissue Engineered Bone Material Consisting of Bone Mesenchymal Stem Cells, Bone Morphogenetic Protein 9 (BMP9) Gene Lentiviral Vector, and P3HB4HB Thermogel (BMSCs-LV-BMP9-P3HB4HB) Repairs Calvarial Skull Defects in Rats by Expression of Osteogenic Factors
title_fullStr A Composite Tissue Engineered Bone Material Consisting of Bone Mesenchymal Stem Cells, Bone Morphogenetic Protein 9 (BMP9) Gene Lentiviral Vector, and P3HB4HB Thermogel (BMSCs-LV-BMP9-P3HB4HB) Repairs Calvarial Skull Defects in Rats by Expression of Osteogenic Factors
title_full_unstemmed A Composite Tissue Engineered Bone Material Consisting of Bone Mesenchymal Stem Cells, Bone Morphogenetic Protein 9 (BMP9) Gene Lentiviral Vector, and P3HB4HB Thermogel (BMSCs-LV-BMP9-P3HB4HB) Repairs Calvarial Skull Defects in Rats by Expression of Osteogenic Factors
title_short A Composite Tissue Engineered Bone Material Consisting of Bone Mesenchymal Stem Cells, Bone Morphogenetic Protein 9 (BMP9) Gene Lentiviral Vector, and P3HB4HB Thermogel (BMSCs-LV-BMP9-P3HB4HB) Repairs Calvarial Skull Defects in Rats by Expression of Osteogenic Factors
title_sort composite tissue engineered bone material consisting of bone mesenchymal stem cells, bone morphogenetic protein 9 (bmp9) gene lentiviral vector, and p3hb4hb thermogel (bmscs-lv-bmp9-p3hb4hb) repairs calvarial skull defects in rats by expression of osteogenic factors
topic Animal Study
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7496453/
https://www.ncbi.nlm.nih.gov/pubmed/32894745
http://dx.doi.org/10.12659/MSM.924666
work_keys_str_mv AT zhoucheng acompositetissueengineeredbonematerialconsistingofbonemesenchymalstemcellsbonemorphogeneticprotein9bmp9genelentiviralvectorandp3hb4hbthermogelbmscslvbmp9p3hb4hbrepairscalvarialskulldefectsinratsbyexpressionofosteogenicfactors
AT yechuan acompositetissueengineeredbonematerialconsistingofbonemesenchymalstemcellsbonemorphogeneticprotein9bmp9genelentiviralvectorandp3hb4hbthermogelbmscslvbmp9p3hb4hbrepairscalvarialskulldefectsinratsbyexpressionofosteogenicfactors
AT zhaochen acompositetissueengineeredbonematerialconsistingofbonemesenchymalstemcellsbonemorphogeneticprotein9bmp9genelentiviralvectorandp3hb4hbthermogelbmscslvbmp9p3hb4hbrepairscalvarialskulldefectsinratsbyexpressionofosteogenicfactors
AT liaojunyi acompositetissueengineeredbonematerialconsistingofbonemesenchymalstemcellsbonemorphogeneticprotein9bmp9genelentiviralvectorandp3hb4hbthermogelbmscslvbmp9p3hb4hbrepairscalvarialskulldefectsinratsbyexpressionofosteogenicfactors
AT liyuwan acompositetissueengineeredbonematerialconsistingofbonemesenchymalstemcellsbonemorphogeneticprotein9bmp9genelentiviralvectorandp3hb4hbthermogelbmscslvbmp9p3hb4hbrepairscalvarialskulldefectsinratsbyexpressionofosteogenicfactors
AT chenhong acompositetissueengineeredbonematerialconsistingofbonemesenchymalstemcellsbonemorphogeneticprotein9bmp9genelentiviralvectorandp3hb4hbthermogelbmscslvbmp9p3hb4hbrepairscalvarialskulldefectsinratsbyexpressionofosteogenicfactors
AT huangwei acompositetissueengineeredbonematerialconsistingofbonemesenchymalstemcellsbonemorphogeneticprotein9bmp9genelentiviralvectorandp3hb4hbthermogelbmscslvbmp9p3hb4hbrepairscalvarialskulldefectsinratsbyexpressionofosteogenicfactors
AT zhoucheng compositetissueengineeredbonematerialconsistingofbonemesenchymalstemcellsbonemorphogeneticprotein9bmp9genelentiviralvectorandp3hb4hbthermogelbmscslvbmp9p3hb4hbrepairscalvarialskulldefectsinratsbyexpressionofosteogenicfactors
AT yechuan compositetissueengineeredbonematerialconsistingofbonemesenchymalstemcellsbonemorphogeneticprotein9bmp9genelentiviralvectorandp3hb4hbthermogelbmscslvbmp9p3hb4hbrepairscalvarialskulldefectsinratsbyexpressionofosteogenicfactors
AT zhaochen compositetissueengineeredbonematerialconsistingofbonemesenchymalstemcellsbonemorphogeneticprotein9bmp9genelentiviralvectorandp3hb4hbthermogelbmscslvbmp9p3hb4hbrepairscalvarialskulldefectsinratsbyexpressionofosteogenicfactors
AT liaojunyi compositetissueengineeredbonematerialconsistingofbonemesenchymalstemcellsbonemorphogeneticprotein9bmp9genelentiviralvectorandp3hb4hbthermogelbmscslvbmp9p3hb4hbrepairscalvarialskulldefectsinratsbyexpressionofosteogenicfactors
AT liyuwan compositetissueengineeredbonematerialconsistingofbonemesenchymalstemcellsbonemorphogeneticprotein9bmp9genelentiviralvectorandp3hb4hbthermogelbmscslvbmp9p3hb4hbrepairscalvarialskulldefectsinratsbyexpressionofosteogenicfactors
AT chenhong compositetissueengineeredbonematerialconsistingofbonemesenchymalstemcellsbonemorphogeneticprotein9bmp9genelentiviralvectorandp3hb4hbthermogelbmscslvbmp9p3hb4hbrepairscalvarialskulldefectsinratsbyexpressionofosteogenicfactors
AT huangwei compositetissueengineeredbonematerialconsistingofbonemesenchymalstemcellsbonemorphogeneticprotein9bmp9genelentiviralvectorandp3hb4hbthermogelbmscslvbmp9p3hb4hbrepairscalvarialskulldefectsinratsbyexpressionofosteogenicfactors