Cargando…
Insertional mutagenesis of Brachypodium distachyon using the Tnt1 retrotransposable element
Brachypodium distachyon is an annual C3 grass used as a monocot model system in functional genomics research. Insertional mutagenesis is a powerful tool for both forward and reverse genetics studies. In this study, we explored the possibility of using the tobacco retrotransposon Tnt1 to create a tra...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7496502/ https://www.ncbi.nlm.nih.gov/pubmed/32410353 http://dx.doi.org/10.1111/tpj.14813 |
_version_ | 1783583111432372224 |
---|---|
author | Nandety, Raja Sekhar Serrani‐Yarce, Juan C. Gill, Upinder S. Oh, Sunhee Lee, Hee‐Kyung Zhang, Xinji Dai, Xinbin Zhang, Wenchao Krom, Nick Wen, Jiangqi Zhao, Patrick X. Mysore, Kirankumar S. |
author_facet | Nandety, Raja Sekhar Serrani‐Yarce, Juan C. Gill, Upinder S. Oh, Sunhee Lee, Hee‐Kyung Zhang, Xinji Dai, Xinbin Zhang, Wenchao Krom, Nick Wen, Jiangqi Zhao, Patrick X. Mysore, Kirankumar S. |
author_sort | Nandety, Raja Sekhar |
collection | PubMed |
description | Brachypodium distachyon is an annual C3 grass used as a monocot model system in functional genomics research. Insertional mutagenesis is a powerful tool for both forward and reverse genetics studies. In this study, we explored the possibility of using the tobacco retrotransposon Tnt1 to create a transposon‐based insertion mutant population in B. distachyon. We developed transgenic B. distachyon plants expressing Tnt1 (R0) and in the subsequent regenerants (R1) we observed that Tnt1 actively transposed during somatic embryogenesis, generating an average of 6.37 insertions per line in a population of 19 independent R1 regenerant plants analyzed. In seed‐derived progeny of R1 plants, Tnt1 segregated in a Mendelian ratio of 3:1 and no new Tnt1 transposition was observed. A total of 126 flanking sequence tags (FSTs) were recovered from the analyzed R0 and R1 lines. Analysis of the FSTs showed a uniform pattern of insertion in all the chromosomes (1–5) without any preference for a particular chromosome region. Considering the average length of a gene transcript to be 3.37 kb, we estimated that 29 613 lines are required to achieve a 90% possibility of tagging a given gene in the B. distachyon genome using the Tnt1‐based mutagenesis approach. Our results show the possibility of using Tnt1 to achieve near‐saturation mutagenesis in B. distachyon, which will aid in functional genomics studies of other C3 grasses. |
format | Online Article Text |
id | pubmed-7496502 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-74965022020-09-25 Insertional mutagenesis of Brachypodium distachyon using the Tnt1 retrotransposable element Nandety, Raja Sekhar Serrani‐Yarce, Juan C. Gill, Upinder S. Oh, Sunhee Lee, Hee‐Kyung Zhang, Xinji Dai, Xinbin Zhang, Wenchao Krom, Nick Wen, Jiangqi Zhao, Patrick X. Mysore, Kirankumar S. Plant J Technical Advance Brachypodium distachyon is an annual C3 grass used as a monocot model system in functional genomics research. Insertional mutagenesis is a powerful tool for both forward and reverse genetics studies. In this study, we explored the possibility of using the tobacco retrotransposon Tnt1 to create a transposon‐based insertion mutant population in B. distachyon. We developed transgenic B. distachyon plants expressing Tnt1 (R0) and in the subsequent regenerants (R1) we observed that Tnt1 actively transposed during somatic embryogenesis, generating an average of 6.37 insertions per line in a population of 19 independent R1 regenerant plants analyzed. In seed‐derived progeny of R1 plants, Tnt1 segregated in a Mendelian ratio of 3:1 and no new Tnt1 transposition was observed. A total of 126 flanking sequence tags (FSTs) were recovered from the analyzed R0 and R1 lines. Analysis of the FSTs showed a uniform pattern of insertion in all the chromosomes (1–5) without any preference for a particular chromosome region. Considering the average length of a gene transcript to be 3.37 kb, we estimated that 29 613 lines are required to achieve a 90% possibility of tagging a given gene in the B. distachyon genome using the Tnt1‐based mutagenesis approach. Our results show the possibility of using Tnt1 to achieve near‐saturation mutagenesis in B. distachyon, which will aid in functional genomics studies of other C3 grasses. John Wiley and Sons Inc. 2020-06-23 2020-08 /pmc/articles/PMC7496502/ /pubmed/32410353 http://dx.doi.org/10.1111/tpj.14813 Text en © 2020 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Technical Advance Nandety, Raja Sekhar Serrani‐Yarce, Juan C. Gill, Upinder S. Oh, Sunhee Lee, Hee‐Kyung Zhang, Xinji Dai, Xinbin Zhang, Wenchao Krom, Nick Wen, Jiangqi Zhao, Patrick X. Mysore, Kirankumar S. Insertional mutagenesis of Brachypodium distachyon using the Tnt1 retrotransposable element |
title | Insertional mutagenesis of Brachypodium distachyon using the Tnt1 retrotransposable element |
title_full | Insertional mutagenesis of Brachypodium distachyon using the Tnt1 retrotransposable element |
title_fullStr | Insertional mutagenesis of Brachypodium distachyon using the Tnt1 retrotransposable element |
title_full_unstemmed | Insertional mutagenesis of Brachypodium distachyon using the Tnt1 retrotransposable element |
title_short | Insertional mutagenesis of Brachypodium distachyon using the Tnt1 retrotransposable element |
title_sort | insertional mutagenesis of brachypodium distachyon using the tnt1 retrotransposable element |
topic | Technical Advance |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7496502/ https://www.ncbi.nlm.nih.gov/pubmed/32410353 http://dx.doi.org/10.1111/tpj.14813 |
work_keys_str_mv | AT nandetyrajasekhar insertionalmutagenesisofbrachypodiumdistachyonusingthetnt1retrotransposableelement AT serraniyarcejuanc insertionalmutagenesisofbrachypodiumdistachyonusingthetnt1retrotransposableelement AT gillupinders insertionalmutagenesisofbrachypodiumdistachyonusingthetnt1retrotransposableelement AT ohsunhee insertionalmutagenesisofbrachypodiumdistachyonusingthetnt1retrotransposableelement AT leeheekyung insertionalmutagenesisofbrachypodiumdistachyonusingthetnt1retrotransposableelement AT zhangxinji insertionalmutagenesisofbrachypodiumdistachyonusingthetnt1retrotransposableelement AT daixinbin insertionalmutagenesisofbrachypodiumdistachyonusingthetnt1retrotransposableelement AT zhangwenchao insertionalmutagenesisofbrachypodiumdistachyonusingthetnt1retrotransposableelement AT kromnick insertionalmutagenesisofbrachypodiumdistachyonusingthetnt1retrotransposableelement AT wenjiangqi insertionalmutagenesisofbrachypodiumdistachyonusingthetnt1retrotransposableelement AT zhaopatrickx insertionalmutagenesisofbrachypodiumdistachyonusingthetnt1retrotransposableelement AT mysorekirankumars insertionalmutagenesisofbrachypodiumdistachyonusingthetnt1retrotransposableelement |